Sol gel synthesis of TiO2@ZnO composites for self-cleaning and antimicrobial coating

Loading...
Thumbnail Image
Date
2024-07-23
Authors
Bruzl, Dominik
Bocian, Luboš
Sokola, Patrik
Másilko, Jiří
Sedlačík, Martin
Švec, Jiří
Bartoníčková, Eva
Šoukal, František
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing
Altmetrics
Abstract
In recent years, the development of advanced materials for applications in self-cleaning surfaces and antimicrobial coatings has received considerable attention due to its potential impact on environmental sustainability and public health. Among the emerging materials, metal oxide-based photocatalysts have shown promise in addressing these challenges. In this context, the present study focuses on the promise sol-gel synthesis and potential photocatalytic properties of TiO2@ZnO (x = 0.6 - 0.9) nano-scaled particles, with particular emphasis on their applications in self-cleaning and microbial coatings. The choice of TiO2@ZnO (x = 0.6 - 0.9) as the subject of investigation is driven by the advantageous properties of both titanium dioxide (TiO2) and zinc oxide (ZnO). TiO2 is known for its exceptional photocatalytic activity, while ZnO is known for its antimicrobial properties. By combining these two metal oxides in a controlled manner, we aim to harness their synergistic effects to create a multifunctional material with enhanced performance. A titanium (IV) isopropoxide and zinc acetate dihydrate have been used as precursors for the so-gel process. The synthesised powders were evaluated by X-ray diffraction analysis and Raman spectroscopy to determine the allotropy of TiO2 and possible lattice distortions. The optical band gap (Egap) was evaluated by molecular reflection UV-VIS spectroscopy. In addition, size and morphology were determined by scanning electron microscopy (SEM).
Description
Citation
Journal of Physics: Conference Series. 2024, vol. 2792, issue 1, p. 1-10.
https://iopscience.iop.org/article/10.1088/1742-6596/2792/1/012006
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO