Stabilization of the ammonia in SNCR fly ash - the influence of tannins presence on the preparation of an autoclaved aerated concrete

Loading...
Thumbnail Image

Authors

Dlabajová, Lucie
Lédl, Matěj
Beranová, Denisa
Opravil, Tomáš

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Altmetrics

Abstract

Thanks to the legislative regulations on NOx emissions, a selective non-catalytic reduction (SNCR) technology had been introduced to a coal combustion process in power plants. The valuable by-product, fly ash, contains ammonia in the form of soluble salts, e.g. NH4HSO4 and (NH4)2SO4. After mixing SNCR fly ash with cement, thanks to the rise of pH, the toxic ammonia releases and contaminates the working area, so the presence of these salts is undesirable in an autoclaved aerated concrete (AAC) manufacturing process. A possible solution is the conversion of soluble ammonium salts to an insoluble form. Tannins are a class of polyphenolic biomolecules, which react with the ammonium ions to form insoluble compounds. The AAC samples were mixed using SNCR fly ash and two different ammonium binding additives - pure tannic acid and the cost-effective animal food supplement containing chestnut tannins. The influence of additives on the hydration process of the starting mixture was studied by isoperibolic calorimetry. The results suggest that the cost-effective source of tannins retards the hydration. The presence of insoluble compounds was studied by the infrared spectroscopy.
Thanks to the legislative regulations on NOx emissions, a selective non-catalytic reduction (SNCR) technology had been introduced to a coal combustion process in power plants. The valuable by-product, fly ash, contains ammonia in the form of soluble salts, e.g. NH4HSO4 and (NH4)2SO4. After mixing SNCR fly ash with cement, thanks to the rise of pH, the toxic ammonia releases and contaminates the working area, so the presence of these salts is undesirable in an autoclaved aerated concrete (AAC) manufacturing process. A possible solution is the conversion of soluble ammonium salts to an insoluble form. Tannins are a class of polyphenolic biomolecules, which react with the ammonium ions to form insoluble compounds. The AAC samples were mixed using SNCR fly ash and two different ammonium binding additives - pure tannic acid and the cost-effective animal food supplement containing chestnut tannins. The influence of additives on the hydration process of the starting mixture was studied by isoperibolic calorimetry. The results suggest that the cost-effective source of tannins retards the hydration. The presence of insoluble compounds was studied by the infrared spectroscopy.

Description

Citation

IOP Conference Series: Materials Science and Engineering. 2019, vol. 583, issue 1, p. 1-8.
https://iopscience.iop.org/article/10.1088/1757-899X/583/1/012020

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported
Citace PRO