Calcium and fluorine signals in HS-LEIS for CaF2(111) and powder-Quantification of atomic surface concentrations using LiF(001), Ca, and Cu references

Loading...
Thumbnail Image

Authors

Průša, Stanislav
Bábík, Pavel
Mach, Jindřich
Strapko, Tomáš
Šikola, Tomáš
Brongersma, Hidde H.

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

AIP Publishing
Altmetrics

Abstract

The powder of CaF2 has been proposed as a practical reference for the quantitation of Ca and F in low energy ion scattering (LEIS) analysis. It is chemically inert, easy to clean, and inexpensive. LEIS is extremely surface sensitive. Thus, in contrast to surface analytic techniques such as x-ray photoelectron spectroscopy and secondary ion mass spectroscopy, the surface termination of a sample is clearly reflected in the LEIS results. It is, thus, unlikely that in LEIS, the F/Ca ratio for CaF2 is 2.0. This paper supports the reliability of the CaF2 powder reference by evaluating the calcium and fluorine atomic surface concentrations, roughness factor and shows that the surface termination of the powder is the same as that of CaF2(111). The CaF2 samples are treated by annealing at 725 K and measured at 625 K. The presented spectra are practically free of contamination. Ion scattering by LiF (001), an evaporated Ca layer, and a Cu foil are used as basic references for Ca and F. The atomic sensitivity factors and the relative sensitivity factors have been determined for F, Ca, and Cu (3 keV He+, 145 degrees). The F/Ca atomic ratio is found to be the same (2.3 +/- 0.1) for CaF2(111) and its powder. For the powder, the Ca and F signals are reduced by a factor of 0.77 +/- 0.03 in comparison with those for the single crystal.
The powder of CaF2 has been proposed as a practical reference for the quantitation of Ca and F in low energy ion scattering (LEIS) analysis. It is chemically inert, easy to clean, and inexpensive. LEIS is extremely surface sensitive. Thus, in contrast to surface analytic techniques such as x-ray photoelectron spectroscopy and secondary ion mass spectroscopy, the surface termination of a sample is clearly reflected in the LEIS results. It is, thus, unlikely that in LEIS, the F/Ca ratio for CaF2 is 2.0. This paper supports the reliability of the CaF2 powder reference by evaluating the calcium and fluorine atomic surface concentrations, roughness factor and shows that the surface termination of the powder is the same as that of CaF2(111). The CaF2 samples are treated by annealing at 725 K and measured at 625 K. The presented spectra are practically free of contamination. Ion scattering by LiF (001), an evaporated Ca layer, and a Cu foil are used as basic references for Ca and F. The atomic sensitivity factors and the relative sensitivity factors have been determined for F, Ca, and Cu (3 keV He+, 145 degrees). The F/Ca atomic ratio is found to be the same (2.3 +/- 0.1) for CaF2(111) and its powder. For the powder, the Ca and F signals are reduced by a factor of 0.77 +/- 0.03 in comparison with those for the single crystal.

Description

Citation

Surface Science Spectra. 2020, vol. 27, issue 2, p. 1-13.
https://avs.scitation.org/doi/pdf/10.1116/6.0000325

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO