Detection Of Collapse By Android Smartphone

but.event.date25.04.2019cs
but.event.titleStudent EEICT 2019cs
dc.contributor.authorRepčík, Tomáš
dc.date.accessioned2020-04-16T07:19:26Z
dc.date.available2020-04-16T07:19:26Z
dc.date.issued2019cs
dc.description.abstractThe bachelor’s study is focused to design and build an Android application for the detection of collapse, which is enhanced by new techniques coming from a sphere of the artificial intelligence modified for smartphones. The application uses accelerometer outputs which are in suspicious moments analysed by the neural network. The artificial intelligence is based on simulated events of collapse and events which resemble a fall of a person. The study describes data collected from 20 people. To provide the best results of training, the most convenient and useful features were selected by multiple approaches. Total accuracy of the collapse detection reached 93 %, with 9 % and 13 % of false positive and false negative detections, respectively.en
dc.formattextcs
dc.format.extent34-37cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings of the 25st Conference STUDENT EEICT 2019. s. 34-37. ISBN 978-80-214-5735-5cs
dc.identifier.isbn978-80-214-5735-5
dc.identifier.urihttp://hdl.handle.net/11012/186611
dc.language.isoskcs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings of the 25st Conference STUDENT EEICT 2019en
dc.relation.urihttp://www.feec.vutbr.cz/EEICT/cs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectcollapseen
dc.subjectAndroid smartphoneen
dc.subjectfall detectionen
dc.subjectmachine learningen
dc.subjectneural networken
dc.subjectPythonen
dc.subjectJavaen
dc.subjectTensorflow liteen
dc.subjectKerasen
dc.titleDetection Of Collapse By Android Smartphoneen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
34_eeict2019.pdf
Size:
688.45 KB
Format:
Adobe Portable Document Format
Description: