Navržení booleovské sítě na základě dat genové exprese u nemodelových organismů

but.committeedoc. Ing. Radovan Jiřík, Ph.D. (předseda) Ing. Martin Mézl, Ph.D. (místopředseda) Ing. Oto Janoušek, Ph.D. (člen) Ing. Jiří Chmelík, Ph.D. (člen) Ing. Martin Králík (člen)cs
but.defenceStudent presented the results of his master thesis and the committee members were acquainted with the reviews. Doc. Jiřík asked: Did you create the masters thesis in time pressure? Student defended the master thesis with reservations and answered the questions.cs
but.jazykangličtina (English)
but.programBioengineering (Double Degree)cs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorMusilová, Janaen
dc.contributor.authorBreda, Maximilianen
dc.contributor.refereeSedlář, Karelen
dc.date.accessioned2025-08-30T04:03:28Z
dc.date.available2025-08-30T04:03:28Z
dc.date.created2025cs
dc.description.abstractBoolean network inference has emerged as an important method for studying gene regulation processes in biological systems. This thesis develops a comprehensive pipeline for inferring genome-wide Boolean networks from RNA-Seq data in the non-model organism Clostridium beijerinckii NRRL B-598. The main aim of this research is to construct a complete regulatory network without the need for pre-existing biological data. The study aims to identify regulatory connections involved in solvent production through an assessment of gene expression patterns across different experimental conditions. This network is built in two stages: R-based preprocessing for fractional counting of multi-mapped reads and Python-based Boolean rule inference with decision tree classifiers. The Bioconductor tools were used for alignment processing, while scikit-learn and bespoke algorithms were employed to build the Boolean rules. The network analysis results demonstrated outstanding performance with successful inference for all 5530 genes, resulting in 17935 regulatory edges, 99.98% of which satisfied high-quality metrics. Notably, the network has biologically plausible features such as sparse connectivity (density = 0.00059) and a high proportion of activation links (97.2%) indicating coordinated regulatory mechanisms. Nonetheless, acknowledging some limitations of this study is essential. The binary discretization of continuous expression data, along with the analysis of just one experimental condition, can risk oversimplifying complex regulatory mechanisms. Moreover, the absence of strict experimental validation that defines research on non-model organisms obstructs biological confirmation of proposed correlations. This limitation highlights the necessity of future experimental validation to verify the computational predictions. This research lays the groundwork for a genome-wide Boolean regulatory network for C. beijerinckii and offers a scalable framework that can be used with other non-model organisms.en
dc.description.abstractBoolean network inference has emerged as an important method for studying gene regulation processes in biological systems. This thesis develops a comprehensive pipeline for inferring genome-wide Boolean networks from RNA-Seq data in the non-model organism Clostridium beijerinckii NRRL B-598. The main aim of this research is to construct a complete regulatory network without the need for pre-existing biological data. The study aims to identify regulatory connections involved in solvent production through an assessment of gene expression patterns across different experimental conditions. This network is built in two stages: R-based preprocessing for fractional counting of multi-mapped reads and Python-based Boolean rule inference with decision tree classifiers. The Bioconductor tools were used for alignment processing, while scikit-learn and bespoke algorithms were employed to build the Boolean rules. The network analysis results demonstrated outstanding performance with successful inference for all 5530 genes, resulting in 17935 regulatory edges, 99.98% of which satisfied high-quality metrics. Notably, the network has biologically plausible features such as sparse connectivity (density = 0.00059) and a high proportion of activation links (97.2%) indicating coordinated regulatory mechanisms. Nonetheless, acknowledging some limitations of this study is essential. The binary discretization of continuous expression data, along with the analysis of just one experimental condition, can risk oversimplifying complex regulatory mechanisms. Moreover, the absence of strict experimental validation that defines research on non-model organisms obstructs biological confirmation of proposed correlations. This limitation highlights the necessity of future experimental validation to verify the computational predictions. This research lays the groundwork for a genome-wide Boolean regulatory network for C. beijerinckii and offers a scalable framework that can be used with other non-model organisms.cs
dc.description.markEcs
dc.identifier.citationBREDA, M. Navržení booleovské sítě na základě dat genové exprese u nemodelových organismů [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2025.cs
dc.identifier.other167537cs
dc.identifier.urihttps://hdl.handle.net/11012/255511
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologiícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectBoolean Networken
dc.subjectRNA-Seqen
dc.subjectGene regulationen
dc.subjectNon-model organismsen
dc.subjectClostridium beijerinckiien
dc.subjectSolvent productionen
dc.subjectDecision treesen
dc.subjectNetwork inferenceen
dc.subjectFractional countingen
dc.subjectSBML-qualen
dc.subjectSystems biologyen
dc.subjectBoolean Networkcs
dc.subjectRNA-Seqcs
dc.subjectGene regulationcs
dc.subjectNon-model organismscs
dc.subjectClostridium beijerinckiics
dc.subjectSolvent productioncs
dc.subjectDecision treescs
dc.subjectNetwork inferencecs
dc.subjectFractional countingcs
dc.subjectSBML-qualcs
dc.subjectSystems biologycs
dc.titleNavržení booleovské sítě na základě dat genové exprese u nemodelových organismůen
dc.title.alternativeBoolean network inference based on gene expression data in non-model organismscs
dc.typeTextcs
dc.type.drivermasterThesisen
dc.type.evskpdiplomová prácecs
dcterms.dateAccepted2025-08-29cs
dcterms.modified2025-08-29-09:28:21cs
eprints.affiliatedInstitution.facultyFakulta elektrotechniky a komunikačních technologiícs
sync.item.dbid167537en
sync.item.dbtypeZPen
sync.item.insts2025.08.30 06:03:28en
sync.item.modts2025.08.30 05:33:35en
thesis.disciplinebez specializacecs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrstvícs
thesis.levelInženýrskýcs
thesis.nameIng.cs

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
15.02 MB
Format:
Adobe Portable Document Format
Description:
file final-thesis.pdf
Loading...
Thumbnail Image
Name:
review_167537.html
Size:
7.06 KB
Format:
Hypertext Markup Language
Description:
file review_167537.html

Collections