Enkapsulace mikroorganismů pro zemědělské aplikace
Loading...
Date
Authors
Advisor
Referee
Mark
P
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta chemická
ORCID
Abstract
Baktérie podporujúce rast rastlín (PGPR) slúžia ako účinné bioinokulanty, ktoré stimulujú rast rastlín a zvyšujú úrodnosť pôdy. Obalenie PGPR v hydrogelových nosičoch poskytuje ochranné prostredie, ktoré zvyšuje ich prežitie, zlepšuje stabilitu a celkovú bioaktivitu v poľnohospodárskych aplikáciách. Táto dizertačná práca predstavuje nový spôsob prípravy bioinokulantov pomocou baktérie Azotobacter vinelandii, schopnej produkovať vlastný alginát, exopolysacharid tvoriaci stabilný gél pri väzbe s iónmi Ca2+. V práci bolo testovaných šesť kmeňov A. vinelandii pochádzajúcich z nemeckých a českých mikrobiálnych zbierok. Kmene boli skúmané na základe ich rastu, produkcie alginátu a podporujúcich vlastností pre rast rastlín. Medzi nimi kmene DSM 87, DSM 720 a CCM 289 produkovali koncentrácie alginátu (4,9 ± 0,6 g/L, 3,5 ± 0,5 g/L a 2,2 ± 0,3 g/L), pričom vykazovali dobrú schopnosť vytvárať pevné gély. Tieto kmene zároveň preukázali výrazné PGPR aktivity, vrátane produkcie indol-3-octovej kyseliny (až do 10,5 g/mL), syntézy siderofórov a solubilizácie fosfátov. Ďalšie experimenty sa zamerali na rôzne možnosti gélovania, vrátane využitia multivalentných iónov, organických kyselín a rovnomerného gélovania v celom objeme prostredníctvom rozpúšťania nerozpustného CaCO3 prítomného v kultivačnom médiu. Pri zameraní sa na samotný aplikačný a priemyselný potenciál tohto procesu pri výrobe biohnojív bol celý postup vyskúšaný aj v bioreaktoroch, kde boli pre kmeň DSM 87 testované vplyvy rýchlosti miešania a objemu naplnenia. Pri vyhodnotení stimulačných účinkov bakteriálnych gélov na rast rastlín boli pestované rastliny šalátu za rôznych podmienok ošetrenia. Výsledky ukázali, že bakteriálne gélové kultúry pozitívne ovplyvnili rast rastlín a zlepšili ich prežitie pri strese spôsobenom suchom. Táto práca predstavuje efektívny, lacný a environmentálne udržateľný postup na výrobu bioinokulantov využitím schopnosti A. vinelandii produkovať alginát, čím ponúka ekologickú alternatívu ku konvenčným metódam hnojenia.
Plant Growth-Promoting Rhizobacteria (PGPR) serve as effective bioinoculants that stimulate plant growth and enhance soil fertility. Encapsulating PGPR within hydrogel matrices provides a protective environment that improves their survival, stability and overall bioactivity in agricultural applications. This dissertation presents a novel self-encapsulation method employing Azotobacter vinelandii, a bacterium capable of synthesizing its own alginate, a natural exopolysaccharide that forms a stable gel upon Ca2+ crosslinking. Six A. vinelandii strains from German and Czech microbial collections were investigated for their growth performance, alginate yield and plant growth-promoting traits. Among them, strains DSM 87, DSM 720 and CCM 289 produced the alginate concentrations (4.9 ± 0.6 g/L, 3.5 ± 0.5 g/L and 2.2 ± 0.3 g/L, respectively) with easy ability to form strong gels. These strains also demonstrated strong PGPR activities, including indole-3-acetic acid production (up to 10.5 g/mL), siderophore synthesis and phosphate solubilization. Further experiments focused on different gelation possibilities including multivalent ions, organic acids and gelation in the whole volume by dissolving insoluble CaCO3 presented in the cultivation media. Focusing on application and industrial potential of this process for biofertilizer production, the entire procedure was up-scaled to bioreactors, where the effects of agitation speed and filling volume were tested for strain DSM 87. To evaluate the plant growth-stimulation properties of the obtained bacterial gels, lettuce plants were cultivated under different treatment conditions. The results demonstrated that bacterial gelled cultures positively influenced plant growth and improved plant survival under drought stress. This work demonstrates a cost-effective and environmentally sustainable approach to bioinoculant production by using A. vinelandii’s alginate-forming capacity, providing a promising alternative to conventional biofertilization methods.
Plant Growth-Promoting Rhizobacteria (PGPR) serve as effective bioinoculants that stimulate plant growth and enhance soil fertility. Encapsulating PGPR within hydrogel matrices provides a protective environment that improves their survival, stability and overall bioactivity in agricultural applications. This dissertation presents a novel self-encapsulation method employing Azotobacter vinelandii, a bacterium capable of synthesizing its own alginate, a natural exopolysaccharide that forms a stable gel upon Ca2+ crosslinking. Six A. vinelandii strains from German and Czech microbial collections were investigated for their growth performance, alginate yield and plant growth-promoting traits. Among them, strains DSM 87, DSM 720 and CCM 289 produced the alginate concentrations (4.9 ± 0.6 g/L, 3.5 ± 0.5 g/L and 2.2 ± 0.3 g/L, respectively) with easy ability to form strong gels. These strains also demonstrated strong PGPR activities, including indole-3-acetic acid production (up to 10.5 g/mL), siderophore synthesis and phosphate solubilization. Further experiments focused on different gelation possibilities including multivalent ions, organic acids and gelation in the whole volume by dissolving insoluble CaCO3 presented in the cultivation media. Focusing on application and industrial potential of this process for biofertilizer production, the entire procedure was up-scaled to bioreactors, where the effects of agitation speed and filling volume were tested for strain DSM 87. To evaluate the plant growth-stimulation properties of the obtained bacterial gels, lettuce plants were cultivated under different treatment conditions. The results demonstrated that bacterial gelled cultures positively influenced plant growth and improved plant survival under drought stress. This work demonstrates a cost-effective and environmentally sustainable approach to bioinoculant production by using A. vinelandii’s alginate-forming capacity, providing a promising alternative to conventional biofertilization methods.
Description
Keywords
Citation
ČERNAYOVÁ, D. Enkapsulace mikroorganismů pro zemědělské aplikace [online]. Brno: Vysoké učení technické v Brně. Fakulta chemická. 2026.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
bez specializace
Comittee
prof. RNDr. Ivana Márová, CSc. (předseda)
doc. Ing. Barbora Branská, PhD. (člen)
doc. Mgr. Pavel Dvořák, Ph.D. (člen)
prof. Mgr. Marek Koutný, Ph.D. (člen)
doc. Ing. Petr Sedláček, Ph.D. (člen)
Prof. Dr.-Ing. Jochen Schmid (člen)
Assoc. Prof. Wojciech Bialas, PhD. (člen)
Date of acceptance
2026-01-22
Defence
Obhajoba probíhala v angličtině. Jeden ze zahraničních oponentů prof. Schmid se připojil prostřednictvím MS Teams. Předsedkyně komise představila doktorandku a předala jí slovo. Ing. Černayová absolvovala v roce 2023 pedagogické minimum. V roce 2023 absolvovala stáž ve Švédsku. Již nyní má určité pracovní zkušenosti. Je spoluautorkou 3 článků v časopisech s impakt faktorem. Je také spoluautorkou celé řady konferenčních příspěvků.
Language of a defence was English. One of the foreign reviewers, Prof. Schmid, joined via MS Teams. The chairwoman of the committee introduced the doctoral student and gave her the floor. Ing. Černayová completed her pedagogical minimum in 2023. In 2023, she also completed an internship in Sweden. She already has some work experience. She is a co-author of three articles in journals with an impact factor. She is also a co-author of numerous conference papers.
Result of defence
práce byla úspěšně obhájena
