Strojové učení v úloze predikce vlivu nukleotidového polymorfismu

Loading...
Thumbnail Image

Date

Authors

Šalanda, Ondřej

Mark

A

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Tato práce prezentuje nový přístup k~predikci efektu nukleotidového polymorfismu v~lidském genomu. Cílem je vytvoření nového klasifikátoru, který kombinuje výsledky již existujících softwarových nástrojů. Tohoto konsenzu nad dílčími výsledky je dosaženo experimentováním s~metodami strojového učení, přičemž výsledný model pak tvoří nejúspěšnější z~nich. Závěrečné komplexní srovnání výsledků metaklasifikátoru s dílčími nástroji ukazuje průměrné navýšení obsahu plochy pod ROC křivkou o 3,4 a eskalaci normované přesnosti až o 7\,\%. Vytvořený prediktor je zpřístupněn prostřednictvím webového rozhraní na adrese http://ll06.sci.muni.cz:6232/snpeffect/.
This thesis brings a new approach to the prediction of the effect of nucleotide polymorphism on human genome. The main goal is to create a new meta-classifier, which combines predictions of several already implemented software classifiers. The novelty of developed tool lies in using machine learning methods to find consensus over those tools, that would enhance accuracy and versatility of prediction. Final experiments show, that compared to the best integrated tool, the meta-classifier increases the area under ROC curve by 3,4 in average and normalized accuracy is improved by up to 7\,\%. The new classifying service is available at http://ll06.sci.muni.cz:6232/snpeffect/.

Description

Citation

ŠALANDA, O. Strojové učení v úloze predikce vlivu nukleotidového polymorfismu [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2015.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Bioinformatika a biocomputing

Comittee

prof. Ing. Lukáš Sekanina, Ph.D. (předseda) doc. Ing. František Zbořil, Ph.D. (místopředseda) Ing. Vladimír Bartík, Ph.D. (člen) doc. Mgr. Lukáš Holík, Ph.D. (člen) doc. Ing. Tomáš Martínek, Ph.D. (člen) doc. RNDr. Petr Šaloun, Ph.D. (člen)

Date of acceptance

2015-06-24

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm " A ". Otázky u obhajoby: Zohlednil jste při vytváření trénovací sady pro metody strojového učení i skutečnost, že některé z nástrojů pro predikci vlivu nukleotidových mutací mohou mít s touto sadou nenulový průnik? Na obrázku 9.9 lze pozorovat, že v některých případech nově navržený konsensuální nástroj ohodnocuje věrohodnost výsledků predikce na 100%, i když věrohodnost jednotlivých nástrojů je nižší. Jak by jste tento výsledek interpretoval?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO