Language-Independent Text Classifier Based On Recurrent Neural Networks
but.event.date | 25.04.2019 | cs |
but.event.title | Student EEICT 2019 | cs |
dc.contributor.author | Myska, Vojtech | |
dc.date.accessioned | 2020-04-16T07:19:41Z | |
dc.date.available | 2020-04-16T07:19:41Z | |
dc.date.issued | 2019 | cs |
dc.description.abstract | This paper deals with a proposal of language independent text classifiers based on recurrent neural networks. They work at a character level thus they do not require any text preprocessing. The classifiers have been trained and evaluated on a multilingual data set that is privately collected from film review databases. It contains Czech (Slovak), English, German and Spanish language subset. The resulting accuracy of the proposed language independent classifiers base on the recurrent neural networks in polarity sentiment analysis task is 78.55%. | en |
dc.format | text | cs |
dc.format.extent | 754-758 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings of the 25st Conference STUDENT EEICT 2019. s. 754-758. ISBN 978-80-214-5735-5 | cs |
dc.identifier.isbn | 978-80-214-5735-5 | |
dc.identifier.uri | http://hdl.handle.net/11012/186773 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings of the 25st Conference STUDENT EEICT 2019 | en |
dc.relation.uri | http://www.feec.vutbr.cz/EEICT/ | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | sentiment analysis | en |
dc.subject | recurrent neural networks | en |
dc.subject | deep learning | en |
dc.title | Language-Independent Text Classifier Based On Recurrent Neural Networks | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 754_eeict2019.pdf
- Size:
- 1.01 MB
- Format:
- Adobe Portable Document Format
- Description: