Transfer Learning For Deep Convolutional Neural Network From Rgb To Ir Domain
but.event.date | 23.04.2020 | cs |
but.event.title | Student EEICT 2020 | cs |
dc.contributor.author | Ligocki, Adam | |
dc.contributor.author | Jelínek, Aleš | |
dc.date.accessioned | 2021-07-15T11:17:22Z | |
dc.date.available | 2021-07-15T11:17:22Z | |
dc.date.issued | 2020 | cs |
dc.description.abstract | In this paper, we are presenting a proof of concept of our system for training of the YOLOv3 neural network for object detection of vehicles in thermal camera images. Our approach is unique in the way we are using a dataset containing a large number of synchronized range measurements as well as RGB and thermal images. We are using the existing YOLO toolkit to detect objects on the RGB images, we estimate detection distance by the LiDAR and later we reproject these detections into the IR image. In this way, we have created a large dataset of annotated thermal images that helped us to significantly improve the performance of the neural network at the IR domain. | en |
dc.format | text | cs |
dc.format.extent | 366-370 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings I of the 26st Conference STUDENT EEICT 2020: General papers. s. 366-370. ISBN 978-80-214-5867-3 | cs |
dc.identifier.isbn | 978-80-214-5867-3 | |
dc.identifier.uri | http://hdl.handle.net/11012/200597 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings I of the 26st Conference STUDENT EEICT 2020: General papers | en |
dc.relation.uri | https://conf.feec.vutbr.cz/eeict/EEICT2020 | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.title | Transfer Learning For Deep Convolutional Neural Network From Rgb To Ir Domain | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 366-eeict_1.pdf
- Size:
- 2.31 MB
- Format:
- Adobe Portable Document Format
- Description: