Transfer Learning For Deep Convolutional Neural Network From Rgb To Ir Domain

but.event.date23.04.2020cs
but.event.titleStudent EEICT 2020cs
dc.contributor.authorLigocki, Adam
dc.contributor.authorJelínek, Aleš
dc.date.accessioned2021-07-15T11:17:22Z
dc.date.available2021-07-15T11:17:22Z
dc.date.issued2020cs
dc.description.abstractIn this paper, we are presenting a proof of concept of our system for training of the YOLOv3 neural network for object detection of vehicles in thermal camera images. Our approach is unique in the way we are using a dataset containing a large number of synchronized range measurements as well as RGB and thermal images. We are using the existing YOLO toolkit to detect objects on the RGB images, we estimate detection distance by the LiDAR and later we reproject these detections into the IR image. In this way, we have created a large dataset of annotated thermal images that helped us to significantly improve the performance of the neural network at the IR domain.en
dc.formattextcs
dc.format.extent366-370cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 26st Conference STUDENT EEICT 2020: General papers. s. 366-370. ISBN 978-80-214-5867-3cs
dc.identifier.isbn978-80-214-5867-3
dc.identifier.urihttp://hdl.handle.net/11012/200597
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 26st Conference STUDENT EEICT 2020: General papersen
dc.relation.urihttps://conf.feec.vutbr.cz/eeict/EEICT2020cs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.titleTransfer Learning For Deep Convolutional Neural Network From Rgb To Ir Domainen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
366-eeict_1.pdf
Size:
2.31 MB
Format:
Adobe Portable Document Format
Description: