Human Body Segmentation Using R-Cnn
but.event.date | 27.04.2021 | cs |
but.event.title | STUDENT EEICT 2021 | cs |
dc.contributor.author | Matějek, Libor | |
dc.date.accessioned | 2021-07-21T07:06:55Z | |
dc.date.available | 2021-07-21T07:06:55Z | |
dc.date.issued | 2021 | cs |
dc.description.abstract | The article deals with basic concepts in the sector of image processing using neural networks.It describes the basic principles and methods of object recognition and image segmentationusing neural network architectures based on R-CNN architecture. Specifically the work focuses onhuman body segmentation from static images, resulting in individual segments in the output maskcorresponding to each limb of a human body | en |
dc.format | text | cs |
dc.format.extent | 87-90 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings I of the 27st Conference STUDENT EEICT 2021: General papers. s. 87-90. ISBN 978-80-214-5942-7 | cs |
dc.identifier.isbn | 978-80-214-5942-7 | |
dc.identifier.uri | http://hdl.handle.net/11012/200714 | |
dc.language.iso | cs | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings I of the 27st Conference STUDENT EEICT 2021: General papers | en |
dc.relation.uri | https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | Image segmentation | en |
dc.subject | Body part recognition | en |
dc.subject | CNN | en |
dc.subject | R-CNN | en |
dc.subject | deep learning | en |
dc.subject | object recognition | en |
dc.title | Human Body Segmentation Using R-Cnn | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 87_eeict-2021_1.pdf
- Size:
- 2.3 MB
- Format:
- Adobe Portable Document Format
- Description: