Porous pseudo-substrates for InGaN quantum well growth: Morphology, structure, and strain relaxation

dc.contributor.authorJi, Yihongcs
dc.contributor.authorFrentrup, Martincs
dc.contributor.authorZhang, Xiaotiancs
dc.contributor.authorPongrácz, Jakubcs
dc.contributor.authorFairclough, Simon M.cs
dc.contributor.authorLiu, Yingjuncs
dc.contributor.authorZhu, Tongtongcs
dc.contributor.authorOliver, Rachel A.cs
dc.coverage.issue14cs
dc.coverage.volume134cs
dc.date.issued2023-10-10cs
dc.description.abstractStrain-related piezoelectric polarization is detrimental to the radiative recombination efficiency for InGaN-based long wavelength micro-LEDs. In this paper, partial strain relaxation of InGaN multiple quantum wells (MQWs) on the wafer scale has been demonstrated by adopting a partially relaxed InGaN superlattice (SL) as the pseudo-substrate. Such a pseudo-substrate was obtained through an electro-chemical etching method, in which a sub-surface InGaN/InGaN superlattice was etched via threading dislocations acting as etching channels. The degree of strain relaxation in MQWs was studied by x-ray reciprocal space mapping, which shows an increase of the in-plane lattice constant with the increase of etching voltage used in fabricating the pseudo-substrate. The reduced strain in the InGaN SL pseudo-substrate was demonstrated to be transferable to InGaN MQWs grown on top of it, and the engineering of the degree of strain relaxation via porosification was achieved. The highest relaxation degree of 44.7% was achieved in the sample with the porous InGaN SL template etched under the highest etching voltage. Morphological and structural properties of partially relaxed InGaN MQWs samples were investigated with the combination of atomic force and transmission electron microscopy. The increased porosity of the InGaN SL template and the newly formed small V-pits during QW growth are suggested as possible origins for the increased strain relaxation of InGaN MQWs.(c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)en
dc.formattextcs
dc.format.extent1-10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJournal of Aplied Physics. 2023, vol. 134, issue 14, p. 1-10.en
dc.identifier.doi10.1063/5.0165066cs
dc.identifier.issn0021-8979cs
dc.identifier.other185276cs
dc.identifier.researcheridADS-7141-2022cs
dc.identifier.scopus000000240865979cs
dc.identifier.urihttp://hdl.handle.net/11012/245105
dc.language.isoencs
dc.publisherAIP Publishingcs
dc.relation.ispartofJournal of Aplied Physicscs
dc.relation.urihttps://pubs.aip.org/aip/jap/article/134/14/145102/2916034/Porous-pseudo-substrates-for-InGaN-quantum-wellcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0021-8979/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectInGaNen
dc.subjectMQWen
dc.subjectXRDen
dc.subjectTEMen
dc.titlePorous pseudo-substrates for InGaN quantum well growth: Morphology, structure, and strain relaxationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-185276en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:51:33en
sync.item.modts2025.01.17 16:42:41en
thesis.grantorVysoké učení technické v Brně. . Ústav fyziky materiálů AV ČRcs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Středoevropský technologický institut VUTcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
145102_1_5.0165066.pdf
Size:
5.1 MB
Format:
Adobe Portable Document Format
Description:
file 145102_1_5.0165066.pdf