Stabilizing Single Ni Adatoms on a Two-Dimensional Porous Titania Overlayer at the SrTiO3(110) Surface

Abstract
Nickel vapor-deposited on the SrTiO3(110) surface was studied using scanning tunneling microscopy, photoemission spectroscopy (PES), and density functional theory calculations. This surface forms a (4 x 1) reconstruction, composed of a 2-D titania structure with periodic six- and ten-membered nanopores. Anchored at these nanopores, Ni single adatoms are stabilized at room temperature. PES measurements show that the Ni adatoms create an in-gap state located at 1.9 eV below the conduction band minimum and induce an upward band bending. Both experimental and theoretical results suggest that Ni adatoms are positively charged. Our study produces well-dispersed singleadatom arrays on a well-characterized oxide support, providing a model system to investigate single-adatom catalytic and magnetic properties.
Práce se zabývá stabilizací jednotlivých atomů Ni na dvourozměrné porézní vrstvě TiO2 na povrchu SrTiO3(110). Atomární struktura povrchu je měřena pomocí STM.
Description
Citation
Journal of Physical Chemistry C (print). 2014, vol. 118, issue 34, p. 19904-19909.
https://pubs.acs.org/doi/10.1021/jp506234r
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO