Prostatic Cells Classification Using Deep Learning
but.event.date | 23.04.2020 | cs |
but.event.title | Student EEICT 2020 | cs |
dc.contributor.author | Majerčík, Jakub | |
dc.contributor.author | Špaček, Michal | |
dc.date.accessioned | 2021-07-15T13:12:40Z | |
dc.date.available | 2021-07-15T13:12:40Z | |
dc.date.issued | 2020 | cs |
dc.description.abstract | Human prostate cancer PC-3 cell line is widely used in cancer research. Previously, Zinc- Resistant variant was described characteristically by higher dry cellular mass determined by quantitative phase imaging. This work aims to classify these 2 cell types into corresponding categories using machine learning methods. We have achieved 97.5% accuracy with the correct preprocessing using Res-Net network. | en |
dc.format | text | cs |
dc.format.extent | 28-31 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings II of the 26st Conference STUDENT EEICT 2020: Selected Papers. s. 28-31. ISBN 978-80-214-5868-0 | cs |
dc.identifier.isbn | 978-80-214-5868-0 | |
dc.identifier.uri | http://hdl.handle.net/11012/200663 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings II of the 26st Conference STUDENT EEICT 2020: Selected papers | en |
dc.relation.uri | https://conf.feec.vutbr.cz/eeict/EEICT2020 | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | cell classification | en |
dc.subject | deep learning | en |
dc.subject | neural network | en |
dc.subject | quantitative phase imaging | en |
dc.subject | microscopy | en |
dc.title | Prostatic Cells Classification Using Deep Learning | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 28-eeict_2.pdf
- Size:
- 936.51 KB
- Format:
- Adobe Portable Document Format
- Description: