Rydberg series of dark excitons and the conduction band spin-orbit splitting in monolayer WSe2

dc.contributor.authorKapuscinski, Piotrcs
dc.contributor.authorDelhomme, Alexcs
dc.contributor.authorVáclavková, Dianacs
dc.contributor.authorSlobodeniuk, Arturcs
dc.contributor.authorGrzeszczyk, Magdalenacs
dc.contributor.authorBartoš, Miroslavcs
dc.contributor.authorWatanabe, Kenjics
dc.contributor.authorTaniguchi, Takashics
dc.contributor.authorFaugeras, Clémentcs
dc.contributor.authorPotemski, Marekcs
dc.coverage.issue1cs
dc.coverage.volume4cs
dc.date.issued2021-08-19cs
dc.description.abstractStrong Coulomb correlations together with multi-valley electronic bands in the presence of spin-orbit interaction are at the heart of studies of the rich physics of excitons in monolayers of transition metal dichalcogenides (TMD). Those archetypes of two-dimensional systems promise a design of new optoelectronic devices. In intrinsic TMD monolayers the basic, intravalley excitons, are formed by a hole from the top of the valence band and an electron either from the lower or upper spin-orbit-split conduction band subbands: one of these excitons is optically active, the second one is dark, although possibly observed under special conditions. Here we demonstrate the s-series of Rydberg dark exciton states in tungsten diselenide monolayer, which appears in addition to a conventional bright exciton series in photoluminescence spectra measured in high in-plane magnetic fields. The comparison of energy ladders of bright and dark Rydberg excitons is shown to be a method to experimentally evaluate one of the missing band parameters in TMD monolayers: the amplitude of the spin-orbit splitting of the conduction band. Excitonic physics dominates the optical response of semiconductor monolayers but single particle band structure parameters are hard to probe experimentally. Here, spin-orbit splitting in the conduction band of monolayer WSe2 is revealed by the identification of the Rydberg series of dark excitons.en
dc.formattextcs
dc.format.extent186-1-186-6cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationCOMMUNICATIONS PHYSICS. 2021, vol. 4, issue 1, p. 186-1-186-6.en
dc.identifier.doi10.1038/s42005-021-00692-3cs
dc.identifier.issn2399-3650cs
dc.identifier.orcid0000-0002-5923-0260cs
dc.identifier.other173163cs
dc.identifier.researcheridB-3350-2014cs
dc.identifier.urihttp://hdl.handle.net/11012/203058
dc.language.isoencs
dc.publisherNATURE PORTFOLIOcs
dc.relation.ispartofCOMMUNICATIONS PHYSICScs
dc.relation.urihttps://www.nature.com/articles/s42005-021-00692-3cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2399-3650/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectPHOTOLUMINESCENCEen
dc.titleRydberg series of dark excitons and the conduction band spin-orbit splitting in monolayer WSe2en
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-173163en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:50:49en
sync.item.modts2025.01.17 19:35:35en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Magneto-Optická a THz Spektroskopiecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s42005021006923.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format
Description:
s42005021006923.pdf