Digital Biomarkers for Assessing Respiratory Disorders in Parkinson’s Disease
Loading...
Date
Authors
Kováč, Daniel
Cvetler, Dominik
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
ORCID
Altmetrics
Abstract
Respiratory disorders are a significant part of hypokineticdysarthria (HD) that affects patients with Parkinson’sdisease (PD). Still, their potential role in the objective assessmentof HD has not yet been fully explored, which is the primary goalof this study. Several respiratory features were designed andextracted from acoustic signals recorded during text reading.Based on these features, the XGBoost model was able to predictclinical test scores of phonorespiration with an estimated errorrate of 12.54%. Statistical analysis revealed that measuring respirationrate and quantifying signal fluctuations during inspirationhave great potential in the objective assessment of respiratorydisorders in patients with PD.
Description
Keywords
Citation
Proceedings II of the 29st Conference STUDENT EEICT 2023: Selected papers. s. 232-236. ISBN 978-80-214-6154-3
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
