Modelování postkritických stavů štíhlých konstrukcí

Loading...
Thumbnail Image

Date

Authors

Mašek, Jan

Mark

A

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta stavební

ORCID

Abstract

Cílem předkládané práce je vytvoření ucelené publikace zabývající se vlastnostmi, řešením a studiem chování dynamických systémů modelů mechanických konstrukcí. Úvodní pasáž teoretické části práce provází čtenáře nejprve problematikou popisu deterministických modelů, předkládá způsoby numerického řešení a zkoumá jeho stabilitu. Rozebrány jsou rovněž možné varianty zatížení, tlumení a odezvy dynamicky zatížené konstrukce. V navazujících kapitolách je podrobně pojednáno o způsobech sledování vývoje dynamických systémů a možnostech identifikace nelineárních a chaotických projevů. Pozornost je věnována také způsobům zobrazování a barevným prostorům jako nezbytným nástrojům pro zkoumání citlivých a složitých systémů. Teoretický základ práce uzavírá úvod do oblasti fraktální geometrie. Diplomová práce dále pokračuje aplikací uvedených poznatků a ukazuje přístup k numerické simulaci a studiu modelů reálných konstrukcí. Nejprve je čtenář seznámen s modelem jednoduchého rotátoru jako nejjednodušším numerickým modelem splňujícím podmínky existence jevu deterministického chaosu. Následující model dvojitého rotátoru ukazuje na problémy pozorování systému s více stavovými proměnnými. Jako příklady modelů reálných konstrukcí s mnoha stupni volnosti konečně slouží modely vetknutého a volného prutu. Tyto modely v ještě větší šíři ukazují, že jednoznačné nebo alespoň dostatečně vypovídající sledování vývoje deterministického systému stává se úkolem složitým, vyžadujícím důvtipný přístup.
The aim of the presented thesis is to create a compact publication which deals with properties, solution and examination of behavior of dynamical systems as models of mechanical structures. The opening portion of the theoretical part leads the reader through the subject of description of dynamical systems, offers solution methods and investigates solution stability. As the introduction proceeds, possible forms of structure loading, damping and response are presented. Following chapters discuss extensively the possible approaches to system behavior observation and identification of nonlinear and chaotic phenomena. The attention is also paid to displaying methods and color spaces as these are essential for the examination of complex and sensitive systems. The theoretical part of the thesis ends with an introduction to fractal geometry. As the theoretical background is laid down, the thesis proceeds with an application of the knowledge and shows the approach to numerical simulation and study of models of real structures. First, the reader is introduced to the single pendulum model, as the simplest model to exhibit chaotic behavior. The following double pendulum model shows the obstacles of observing systems with more state variables. The models of free rod and cantilever serve as examples of real structure models with many degrees of freedom. These models show even more that a definite or at least sufficiently relevant monitoring of behavior of such deterministic systems is a challenging task which requires sophisticated approach.

Description

Citation

MAŠEK, J. Modelování postkritických stavů štíhlých konstrukcí [online]. Brno: Vysoké učení technické v Brně. Fakulta stavební. 2016.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Konstrukce a dopravní stavby

Comittee

Date of acceptance

2016-02-02

Defence

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO