Scalable Person Identification System For Real-Time Applications
but.event.date | 25.04.2019 | cs |
but.event.title | Student EEICT 2019 | cs |
dc.contributor.author | Rajnoha, Martin | |
dc.date.accessioned | 2020-04-16T07:19:37Z | |
dc.date.available | 2020-04-16T07:19:37Z | |
dc.date.issued | 2019 | cs |
dc.description.abstract | Face recognition systems can play significant role in our every day lives. This paper proposes a scalable system for person identification based on face recognition methods and its implementation that utilizes queues, containers and microservices architecture. The proposed system uses a GPU acceleration therefore it can run in real-time. It utilizes two deep neural networks – Single Shot Multibox Detector (SSD) for a face detection and Facenet for a face recognition. | en |
dc.format | text | cs |
dc.format.extent | 500-504 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings of the 25st Conference STUDENT EEICT 2019. s. 500-504. ISBN 978-80-214-5735-5 | cs |
dc.identifier.isbn | 978-80-214-5735-5 | |
dc.identifier.uri | http://hdl.handle.net/11012/186723 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings of the 25st Conference STUDENT EEICT 2019 | en |
dc.relation.uri | http://www.feec.vutbr.cz/EEICT/ | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | facerecognition | en |
dc.subject | scalable | en |
dc.subject | realtime | en |
dc.subject | detection | en |
dc.subject | microservices | en |
dc.subject | queues | en |
dc.subject | identification | en |
dc.title | Scalable Person Identification System For Real-Time Applications | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 500_eeict2019.pdf
- Size:
- 595.79 KB
- Format:
- Adobe Portable Document Format
- Description: