2D and 3D numerical modelling of internal flow of Pressure-swirl atomizer

dc.contributor.authorMalý, Milancs
dc.contributor.authorSláma, Jaroslavcs
dc.contributor.authorSapík, Marcelcs
dc.contributor.authorJedelský, Jancs
dc.coverage.issue1cs
dc.coverage.volume213cs
dc.date.issued2019-06-28cs
dc.description.abstractThis paper compares 2D axisymmetric and 3D numerical models used to predict the internal flow of a pressure-swirl atomizer using a commercial software Ansys Fluent 18.1. The computed results are compared with experimental data in terms of spray cone angle (SCA), discharge coefficient (CD), internal air-core dimensions and swirl velocity profile. The swirl velocity was experimentally studied using a Laser Doppler Anemometry in a scaled transparent model of the atomizer. The internal air-core was visualized at high temporal and spatial resolution by a high-speed camera with backlit illumination. The internal flow was numerically treated as transient two-phase flow. The gas-liquid interface was captured with Volume of Fluid scheme. The numerical solver used both laminar and turbulent approach. Turbulence was modelled using k-, k-, Reynolds Stress model (RSM) and coarse Large Eddy Simulation (LES). The laminar solver was capable to predict all the parameters with an error less than 5% compared with the experimental results in both 2D and 3D simulation. However, it overpredicted the velocity of the discharged liquid sheet. The LES model performed similarly to the laminar solver, but the liquid sheet velocity was 10% lower. The two-equation models k- and k- overpredicted the turbulence viscosity and the internal air-core was not predicteden
dc.formattextcs
dc.format.extent1-6cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationEPJ Web of Conferences. 2019, vol. 213, issue 1, p. 1-6.en
dc.identifier.doi10.1051/epjconf/201921302055cs
dc.identifier.issn2100-014Xcs
dc.identifier.orcid0000-0002-1193-519Xcs
dc.identifier.orcid0000-0002-1268-8434cs
dc.identifier.other151959cs
dc.identifier.researcheridAAY-7288-2021cs
dc.identifier.researcheridAAD-1936-2019cs
dc.identifier.researcheridA-9224-2013cs
dc.identifier.scopus57189715785cs
dc.identifier.scopus57201154516cs
dc.identifier.scopus23090535800cs
dc.identifier.urihttp://hdl.handle.net/11012/194670
dc.language.isoencs
dc.publisherEDP Sciencescs
dc.relation.ispartofEPJ Web of Conferencescs
dc.relation.urihttps://www.epj-conferences.org/articles/epjconf/abs/2019/18/epjconf_efm18_02055/epjconf_efm18_02055.htmlcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2100-014X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectPressure-swirlen
dc.subjectCFDen
dc.subjectInternal flowen
dc.subjectLDAen
dc.title2D and 3D numerical modelling of internal flow of Pressure-swirl atomizeren
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-151959en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:47:12en
sync.item.modts2025.01.17 18:47:05en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. EÚ-odbor termomechaniky a techniky prostředícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
epjconf_efm18_02055.pdf
Size:
1.76 MB
Format:
Adobe Portable Document Format
Description:
epjconf_efm18_02055.pdf