Silicate conductive composites with graphite-based fillers

Loading...
Thumbnail Image

Authors

Baránek, Šimon
Černý, Vít
Yakovlev, G.I.
Drochytka, Rostislav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Altmetrics

Abstract

Electroconductive composites are modern materials that are commonly used in many industries such as construction industry and machine-building industry. For example, these materials can be useful as sensors for monitoring changes in constructions, shielding stray currents from electrification networks, shielding electromagnetic radiation in operating rooms, cathodic protection against moisture or overvoltage protection of buildings. The topic of this post is the research of electrically conductive silicate composites with graphite-based fillers. In this research will be tested composites with different ratio and types of graphite and monitor their electroconductive properties like impedance, and physical-mechanical properties like compressive and tensile strength. The post describes basic properties and interactions of silicate electrically conductive composites with graphite fillers. It was found that by adding 10 % wt. graphite into silicate composites, impedance is reduced by 50% and compressive strength by 40%. The flexural tensile strength depends mainly on the roughness of the particles, where the coarser flaky particles transfer the load better and increase the strength while very fine graphites reduce the flexural tensile strength. Furthermore, it has been found that very finely ground synthetic graphites are most suitable for achieving low impedance of composites.
Electroconductive composites are modern materials that are commonly used in many industries such as construction industry and machine-building industry. For example, these materials can be useful as sensors for monitoring changes in constructions, shielding stray currents from electrification networks, shielding electromagnetic radiation in operating rooms, cathodic protection against moisture or overvoltage protection of buildings. The topic of this post is the research of electrically conductive silicate composites with graphite-based fillers. In this research will be tested composites with different ratio and types of graphite and monitor their electroconductive properties like impedance, and physical-mechanical properties like compressive and tensile strength. The post describes basic properties and interactions of silicate electrically conductive composites with graphite fillers. It was found that by adding 10 % wt. graphite into silicate composites, impedance is reduced by 50% and compressive strength by 40%. The flexural tensile strength depends mainly on the roughness of the particles, where the coarser flaky particles transfer the load better and increase the strength while very fine graphites reduce the flexural tensile strength. Furthermore, it has been found that very finely ground synthetic graphites are most suitable for achieving low impedance of composites.

Description

Citation

IOP Conference Series: Materials Science and Engineering. 2021, vol. 1209, issue 012035, p. 1-7.
https://iopscience.iop.org/article/10.1088/1757-899X/1209/1/012035

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported
Citace PRO