Solutions with prescribed mass to Kirchhoff equations: generic double-behaviour nonlinearities

dc.contributor.authorCai, Lics
dc.contributor.authorRadulescu, Vicentiucs
dc.coverage.issue10cs
dc.coverage.volume38cs
dc.date.accessioned2025-10-30T11:04:36Z
dc.date.available2025-10-30T11:04:36Z
dc.date.issued2025-10-30cs
dc.description.abstractIn this paper, we study the Kirchhoff equation {-(a+b integral(3)(R)|del u|(2)dx)Delta u+lambda u=f(u), x is an element of R-3, integral(3)(R)|u|(2)dx=c(2), x is an element of R-3, (lambda,u)is an element of RxH(1)(R-3), where a,b,c>0, lambda is an element of R is unknown as a Lagrange multiplier. We provide generic assumptions about the nonlinearity f(u), which correspond to the L-2-subcritical, L-2-critical, L-2-supercritical, and Sobolev critical cases. Making use of the minimization of the energy functional over a linear combination of the Nehari and Pohozaev constraints intersected with the product of the closed balls in L-2(R-3) of radii c, we prove the existence of normalized solutions to the Kirchhoff equation.en
dc.description.abstractIn this paper, we study the Kirchhoff equation {-(a+b integral(3)(R)|del u|(2)dx)Delta u+lambda u=f(u), x is an element of R-3, integral(3)(R)|u|(2)dx=c(2), x is an element of R-3, (lambda,u)is an element of RxH(1)(R-3), where a,b,c>0, lambda is an element of R is unknown as a Lagrange multiplier. We provide generic assumptions about the nonlinearity f(u), which correspond to the L-2-subcritical, L-2-critical, L-2-supercritical, and Sobolev critical cases. Making use of the minimization of the energy functional over a linear combination of the Nehari and Pohozaev constraints intersected with the product of the closed balls in L-2(R-3) of radii c, we prove the existence of normalized solutions to the Kirchhoff equation.en
dc.formattextcs
dc.format.extent33cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationNonlinearity. 2025, vol. 38, issue 10, 33 p.en
dc.identifier.doi10.1088/1361-6544/ae0b26cs
dc.identifier.issn0951-7715cs
dc.identifier.orcid0000-0003-4615-5537cs
dc.identifier.other199220cs
dc.identifier.researcheridA-1503-2012cs
dc.identifier.scopus35608668800cs
dc.identifier.urihttps://hdl.handle.net/11012/255602
dc.language.isoencs
dc.relation.ispartofNonlinearitycs
dc.relation.urihttps://iopscience-iop-org.ezproxy.lib.vutbr.cz/article/10.1088/1361-6544/ae0b26cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0951-7715/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectKirchhoff equationsen
dc.subjectnormalized solutionsen
dc.subjectgeneric double-behaviour nonlinearitiesen
dc.subjectPohozaev constraintsen
dc.subjectKirchhoff equations
dc.subjectnormalized solutions
dc.subjectgeneric double-behaviour nonlinearities
dc.subjectPohozaev constraints
dc.titleSolutions with prescribed mass to Kirchhoff equations: generic double-behaviour nonlinearitiesen
dc.title.alternativeSolutions with prescribed mass to Kirchhoff equations: generic double-behaviour nonlinearitiesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-199220en
sync.item.dbtypeVAVen
sync.item.insts2025.10.30 12:04:36en
sync.item.modts2025.10.30 11:33:10en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cai_2025_Nonlinearity_38_105004.pdf
Size:
275.78 KB
Format:
Adobe Portable Document Format
Description:
file Cai_2025_Nonlinearity_38_105004.pdf