Solutions with prescribed mass to Kirchhoff equations: generic double-behaviour nonlinearities
| dc.contributor.author | Cai, Li | cs |
| dc.contributor.author | Radulescu, Vicentiu | cs |
| dc.coverage.issue | 10 | cs |
| dc.coverage.volume | 38 | cs |
| dc.date.accessioned | 2025-10-30T11:04:36Z | |
| dc.date.available | 2025-10-30T11:04:36Z | |
| dc.date.issued | 2025-10-30 | cs |
| dc.description.abstract | In this paper, we study the Kirchhoff equation {-(a+b integral(3)(R)|del u|(2)dx)Delta u+lambda u=f(u), x is an element of R-3, integral(3)(R)|u|(2)dx=c(2), x is an element of R-3, (lambda,u)is an element of RxH(1)(R-3), where a,b,c>0, lambda is an element of R is unknown as a Lagrange multiplier. We provide generic assumptions about the nonlinearity f(u), which correspond to the L-2-subcritical, L-2-critical, L-2-supercritical, and Sobolev critical cases. Making use of the minimization of the energy functional over a linear combination of the Nehari and Pohozaev constraints intersected with the product of the closed balls in L-2(R-3) of radii c, we prove the existence of normalized solutions to the Kirchhoff equation. | en |
| dc.description.abstract | In this paper, we study the Kirchhoff equation {-(a+b integral(3)(R)|del u|(2)dx)Delta u+lambda u=f(u), x is an element of R-3, integral(3)(R)|u|(2)dx=c(2), x is an element of R-3, (lambda,u)is an element of RxH(1)(R-3), where a,b,c>0, lambda is an element of R is unknown as a Lagrange multiplier. We provide generic assumptions about the nonlinearity f(u), which correspond to the L-2-subcritical, L-2-critical, L-2-supercritical, and Sobolev critical cases. Making use of the minimization of the energy functional over a linear combination of the Nehari and Pohozaev constraints intersected with the product of the closed balls in L-2(R-3) of radii c, we prove the existence of normalized solutions to the Kirchhoff equation. | en |
| dc.format | text | cs |
| dc.format.extent | 33 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | Nonlinearity. 2025, vol. 38, issue 10, 33 p. | en |
| dc.identifier.doi | 10.1088/1361-6544/ae0b26 | cs |
| dc.identifier.issn | 0951-7715 | cs |
| dc.identifier.orcid | 0000-0003-4615-5537 | cs |
| dc.identifier.other | 199220 | cs |
| dc.identifier.researcherid | A-1503-2012 | cs |
| dc.identifier.scopus | 35608668800 | cs |
| dc.identifier.uri | https://hdl.handle.net/11012/255602 | |
| dc.language.iso | en | cs |
| dc.relation.ispartof | Nonlinearity | cs |
| dc.relation.uri | https://iopscience-iop-org.ezproxy.lib.vutbr.cz/article/10.1088/1361-6544/ae0b26 | cs |
| dc.rights | Creative Commons Attribution 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/0951-7715/ | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | Kirchhoff equations | en |
| dc.subject | normalized solutions | en |
| dc.subject | generic double-behaviour nonlinearities | en |
| dc.subject | Pohozaev constraints | en |
| dc.subject | Kirchhoff equations | |
| dc.subject | normalized solutions | |
| dc.subject | generic double-behaviour nonlinearities | |
| dc.subject | Pohozaev constraints | |
| dc.title | Solutions with prescribed mass to Kirchhoff equations: generic double-behaviour nonlinearities | en |
| dc.title.alternative | Solutions with prescribed mass to Kirchhoff equations: generic double-behaviour nonlinearities | en |
| dc.type.driver | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| sync.item.dbid | VAV-199220 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2025.10.30 12:04:36 | en |
| sync.item.modts | 2025.10.30 11:33:10 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Cai_2025_Nonlinearity_38_105004.pdf
- Size:
- 275.78 KB
- Format:
- Adobe Portable Document Format
- Description:
- file Cai_2025_Nonlinearity_38_105004.pdf
