Concentration of solutions for non-autonomous double-phase problems with lack of compactness
| dc.contributor.author | zhang, Weiqiang | cs |
| dc.contributor.author | Zuo, Jiabin | cs |
| dc.contributor.author | Radulescu, Vicentiu | cs |
| dc.coverage.issue | 7 | cs |
| dc.coverage.volume | 75 | cs |
| dc.date.issued | 2024-07-20 | cs |
| dc.description.abstract | The present paper is devoted to the study of the following double-phase equation (Formula presented.) where N2, 1<p<q<N, q<p with p=NpN-p, :RNR is a continuous non-negative function, (x)=(x), V:RNR is a positive potential satisfying a local minimum condition, V(x)=V(x), and the nonlinearity f:RR is a continuous function with subcritical growth. Under natural assumptions on , V and f, by using penalization methods and Lusternik–Schnirelmann theory we first establish the multiplicity of solutions, and then, we obtain concentration properties of solutions. | en |
| dc.description.abstract | The present paper is devoted to the study of the following double-phase equation (Formula presented.) where N2, 1<p<q<N, q<p with p=NpN-p, :RNR is a continuous non-negative function, (x)=(x), V:RNR is a positive potential satisfying a local minimum condition, V(x)=V(x), and the nonlinearity f:RR is a continuous function with subcritical growth. Under natural assumptions on , V and f, by using penalization methods and Lusternik–Schnirelmann theory we first establish the multiplicity of solutions, and then, we obtain concentration properties of solutions. | en |
| dc.format | text | cs |
| dc.format.extent | 1-30 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK. 2024, vol. 75, issue 7, p. 1-30. | en |
| dc.identifier.doi | 10.1007/s00033-024-02290-z | cs |
| dc.identifier.issn | 0044-2275 | cs |
| dc.identifier.orcid | 0000-0003-4615-5537 | cs |
| dc.identifier.other | 189162 | cs |
| dc.identifier.researcherid | A-1503-2012 | cs |
| dc.identifier.scopus | 35608668800 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/250077 | |
| dc.language.iso | en | cs |
| dc.publisher | Springer Nature | cs |
| dc.relation.ispartof | ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | cs |
| dc.relation.uri | https://link.springer.com/article/10.1007/s00033-024-02290-z | cs |
| dc.rights | Creative Commons Attribution 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/0044-2275/ | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | Concentrating phenomenon | en |
| dc.subject | Double-phase operator | en |
| dc.subject | Lusternik–Schnirelmann theory | en |
| dc.subject | Penalization methods | en |
| dc.subject | Concentrating phenomenon | |
| dc.subject | Double-phase operator | |
| dc.subject | Lusternik–Schnirelmann theory | |
| dc.subject | Penalization methods | |
| dc.title | Concentration of solutions for non-autonomous double-phase problems with lack of compactness | en |
| dc.title.alternative | Concentration of solutions for non-autonomous double-phase problems with lack of compactness | en |
| dc.type.driver | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| sync.item.dbid | VAV-189162 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2025.10.14 14:10:20 | en |
| sync.item.modts | 2025.10.14 10:05:28 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s0003302402290z.pdf
- Size:
- 586.64 KB
- Format:
- Adobe Portable Document Format
- Description:
- file s0003302402290z.pdf
