Concentration of solutions for non-autonomous double-phase problems with lack of compactness

dc.contributor.authorzhang, Weiqiangcs
dc.contributor.authorZuo, Jiabincs
dc.contributor.authorRadulescu, Vicentiucs
dc.coverage.issue7cs
dc.coverage.volume75cs
dc.date.issued2024-07-20cs
dc.description.abstractThe present paper is devoted to the study of the following double-phase equation (Formula presented.) where N2, 1<p<q<N, q<p with p=NpN-p, :RNR is a continuous non-negative function, (x)=(x), V:RNR is a positive potential satisfying a local minimum condition, V(x)=V(x), and the nonlinearity f:RR is a continuous function with subcritical growth. Under natural assumptions on , V and f, by using penalization methods and Lusternik–Schnirelmann theory we first establish the multiplicity of solutions, and then, we obtain concentration properties of solutions.en
dc.description.abstractThe present paper is devoted to the study of the following double-phase equation (Formula presented.) where N2, 1<p<q<N, q<p with p=NpN-p, :RNR is a continuous non-negative function, (x)=(x), V:RNR is a positive potential satisfying a local minimum condition, V(x)=V(x), and the nonlinearity f:RR is a continuous function with subcritical growth. Under natural assumptions on , V and f, by using penalization methods and Lusternik–Schnirelmann theory we first establish the multiplicity of solutions, and then, we obtain concentration properties of solutions.en
dc.formattextcs
dc.format.extent1-30cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK. 2024, vol. 75, issue 7, p. 1-30.en
dc.identifier.doi10.1007/s00033-024-02290-zcs
dc.identifier.issn0044-2275cs
dc.identifier.orcid0000-0003-4615-5537cs
dc.identifier.other189162cs
dc.identifier.researcheridA-1503-2012cs
dc.identifier.scopus35608668800cs
dc.identifier.urihttp://hdl.handle.net/11012/250077
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIKcs
dc.relation.urihttps://link.springer.com/article/10.1007/s00033-024-02290-zcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0044-2275/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectConcentrating phenomenonen
dc.subjectDouble-phase operatoren
dc.subjectLusternik–Schnirelmann theoryen
dc.subjectPenalization methodsen
dc.subjectConcentrating phenomenon
dc.subjectDouble-phase operator
dc.subjectLusternik–Schnirelmann theory
dc.subjectPenalization methods
dc.titleConcentration of solutions for non-autonomous double-phase problems with lack of compactnessen
dc.title.alternativeConcentration of solutions for non-autonomous double-phase problems with lack of compactnessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-189162en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:10:20en
sync.item.modts2025.10.14 10:05:28en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematikycs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s0003302402290z.pdf
Size:
586.64 KB
Format:
Adobe Portable Document Format
Description:
file s0003302402290z.pdf