Inverse calculation of local heat transfer coefficient on generic surfaces in OpenFOAM

dc.contributor.authorBoháček, Jancs
dc.contributor.authorHnízdil, Milancs
dc.contributor.authorHvožďa, Jiřícs
dc.contributor.authorFerro, Lorenzocs
dc.contributor.authorKarimi-Sibaki, Ebrahimcs
dc.contributor.authorVakhrushev, Alexandercs
dc.coverage.issue110208cs
dc.coverage.volume219cs
dc.date.issued2025-08-16cs
dc.description.abstractThe inverse heat conduction problem (IHCP) is a classic example from the large family of inverse problems, in which a thermal boundary condition is reconstructed on a surface of a body. When the normal fluxes dominate the heat transfer and the tangential fluxes are small, the problem can be simplified into one dimensional. Often, the opposite is true and a multidimensional problem needs to be solved. This paper presents a universal IHCP solver implemented in the open-source code OpenFOAM, whose main advantages are polyhedral meshes, variety of linear solvers, parallel calculations, being an open-source. The solver is robust, efficient and accurate. The quality of the solver is demonstrated on three examples: (i) jet cooling in the pressure die casting, spray cooling of (ii) a rail and (iii) a tube. Valuable data from experiments were used as an input in all three examples. Additionally, this paper introduces, for the first time, a novel semi-analytical formula for determining the optimal number of future timesteps required to solve the sequential IHCP.en
dc.description.abstractThe inverse heat conduction problem (IHCP) is a classic example from the large family of inverse problems, in which a thermal boundary condition is reconstructed on a surface of a body. When the normal fluxes dominate the heat transfer and the tangential fluxes are small, the problem can be simplified into one dimensional. Often, the opposite is true and a multidimensional problem needs to be solved. This paper presents a universal IHCP solver implemented in the open-source code OpenFOAM, whose main advantages are polyhedral meshes, variety of linear solvers, parallel calculations, being an open-source. The solver is robust, efficient and accurate. The quality of the solver is demonstrated on three examples: (i) jet cooling in the pressure die casting, spray cooling of (ii) a rail and (iii) a tube. Valuable data from experiments were used as an input in all three examples. Additionally, this paper introduces, for the first time, a novel semi-analytical formula for determining the optimal number of future timesteps required to solve the sequential IHCP.en
dc.formattextcs
dc.format.extent1-13cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationINTERNATIONAL JOURNAL OF THERMAL SCIENCES. 2025, vol. 219, issue 110208, p. 1-13.en
dc.identifier.doi10.1016/j.ijthermalsci.2025.110208cs
dc.identifier.issn1290-0729cs
dc.identifier.orcid0000-0003-3319-4254cs
dc.identifier.orcid0000-0003-1657-5186cs
dc.identifier.orcid0000-0002-4444-4485cs
dc.identifier.other198536cs
dc.identifier.researcheridC-2078-2018cs
dc.identifier.researcheridC-2414-2018cs
dc.identifier.researcheridAAQ-1466-2021cs
dc.identifier.scopus55213548700cs
dc.identifier.scopus37020261100cs
dc.identifier.scopus57222749606cs
dc.identifier.urihttp://hdl.handle.net/11012/255550
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofINTERNATIONAL JOURNAL OF THERMAL SCIENCEScs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S1290072925005319cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1290-0729/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectInverse heat conduction problemen
dc.subjectdie castingen
dc.subjectJet cooleren
dc.subjectSpray coolingen
dc.subjectRailen
dc.subjectTubeen
dc.subjectFuture timestepsen
dc.subjectInverse heat conduction problem
dc.subjectdie casting
dc.subjectJet cooler
dc.subjectSpray cooling
dc.subjectRail
dc.subjectTube
dc.subjectFuture timesteps
dc.titleInverse calculation of local heat transfer coefficient on generic surfaces in OpenFOAMen
dc.title.alternativeInverse calculation of local heat transfer coefficient on generic surfaces in OpenFOAMen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/MSM/LU/LUAUS24006cs
sync.item.dbidVAV-198536en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:53:08en
sync.item.modts2025.10.14 09:33:28en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Laboratoř přenosu tepla a prouděnícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S1290072925005319main.pdf
Size:
9.08 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S1290072925005319main.pdf