LSTM-Based Autoencoders in Online Handwriting Data Augmentation and Preprocessing
but.event.date | 23.04.2024 | cs |
but.event.title | STUDENT EEICT 2024 | cs |
dc.contributor.author | Gavenciak, Michal | |
dc.date.accessioned | 2024-07-09T07:38:39Z | |
dc.date.available | 2024-07-09T07:38:39Z | |
dc.date.issued | 2024 | cs |
dc.description.abstract | On-line handwriting analysis is a research field that is among others used in assessment of handwriting difficulties (HD), which can be manifestations of degenerative brain diseases such as Parkinson’s disease in the elderly, or developmental dysgraphia in children. Using advanced modelling approaches or artificial intelligence is often difficult because of the limited data availability in both demographic cohorts. In this article, a data processing approach, using LSTM-based autoencoders, is described as a way of augmenting the database with semisynthetic data or preprocessing the data to improve the performance of feature-based classification. The proposed method has led to a 3 percentage point increase in classification accuracy when compared to baseline. While the improvement is marginal, it highlights another possible area of research to improve the efficacy of automated HD assessment. | en |
dc.format | text | cs |
dc.format.extent | 211-215 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings I of the 30st Conference STUDENT EEICT 2024: General papers. s. 211-215. ISBN 978-80-214-6231-1 | cs |
dc.identifier.isbn | 978-80-214-6231-1 | |
dc.identifier.issn | 2788-1334 | |
dc.identifier.uri | https://hdl.handle.net/11012/249237 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings I of the 30st Conference STUDENT EEICT 2024: General papers | en |
dc.relation.uri | https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | Handwriting difficulties | en |
dc.subject | XGBoost | en |
dc.subject | LSTM | en |
dc.subject | autoencoder | en |
dc.title | LSTM-Based Autoencoders in Online Handwriting Data Augmentation and Preprocessing | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 211-eeict-2024.pdf
- Size:
- 813.32 KB
- Format:
- Adobe Portable Document Format
- Description: