Removal of Microcystis aeruginosa through the Combined Effect of Plasma Discharge and Hydrodynamic Cavitation

Loading...
Thumbnail Image

Authors

Maršálek, Blahoslav
Maršálková, Eliška
Odehnalová, Klára
Pochylý, František
Rudolf, Pavel
Sťahel, Pavel
Ráheľ, Jozef
Čech, Jan
Fialová, Simona
Zezulka, Štěpán

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Cyanobacterial water blooms represent toxicological, ecological and technological problems around the globe. When present in raw water used for drinking water production, one of the best strategies is to remove the cyanobacterial biomass gently before treatment, avoiding cell destruction and cyanotoxins release. This paper presents a new method for the removal of cyanobacterial biomass during drinking water pre-treatment that combines hydrodynamic cavitation with cold plasma discharge. Cavitation produces press stress that causes Microcystis gas vesicles to collapse. The cyanobacteria then sink, allowing for removal by sedimentation. The cyanobacteria showed no signs of revitalisation, even after seven days under optimal conditions with nutrient enrichment, as photosynthetic activity is negatively affected by hydrogen peroxide produced by plasma burnt in the cavitation cloud. Using this method, cyanobacteria can be removed in a single treatment, with no increase in microcystin concentration. This novel technology appears to be highly promising for continual treatment of raw water inflow in drinking water treatment plants and will also be of interest to those wishing to treat surface waters without the use of algaecides
Cyanobacterial water blooms represent toxicological, ecological and technological problems around the globe. When present in raw water used for drinking water production, one of the best strategies is to remove the cyanobacterial biomass gently before treatment, avoiding cell destruction and cyanotoxins release. This paper presents a new method for the removal of cyanobacterial biomass during drinking water pre-treatment that combines hydrodynamic cavitation with cold plasma discharge. Cavitation produces press stress that causes Microcystis gas vesicles to collapse. The cyanobacteria then sink, allowing for removal by sedimentation. The cyanobacteria showed no signs of revitalisation, even after seven days under optimal conditions with nutrient enrichment, as photosynthetic activity is negatively affected by hydrogen peroxide produced by plasma burnt in the cavitation cloud. Using this method, cyanobacteria can be removed in a single treatment, with no increase in microcystin concentration. This novel technology appears to be highly promising for continual treatment of raw water inflow in drinking water treatment plants and will also be of interest to those wishing to treat surface waters without the use of algaecides

Description

Citation

Water. 2019, vol. 12, issue 1, p. 1-14.
https://www.mdpi.com/2073-4441/12/1/8

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO