Model hlubokého učení vhodný pro vizuální detekci a klasifikaci obecného objektu z průmyslu

Loading...
Thumbnail Image

Date

Authors

Dočkal, Radim

Mark

C

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

Cílem této bakalářské práce je naprogramovat model hlubokého učení pro vizuální detekci a klasifikaci obecného objektu z průmyslu. Práce je rozdělena do pěti kapitol. První kapitola se zabývá rešerší nejpoužívanějších architektur tohoto typu. Druhá kapitola se zabývá výběrem nejvhodnější architektury pro použití v průmyslu. Ve třetí kapitole je popsán postup vytváření vlastního datasetu. Ve čtvrté kapitole je pak popsán celý proces samotné implementace modelu tak, aby každá dílčí část architektury byla dostatečně vysvětlena a v páté kapitole jsou popsány výsledky. Shrnutí výsledků a doporučené procedury pro případnou implementaci v reálném prostředí jsou k nalezení v závěru této práce.
The goal of this bachelor’s thesis is to programme deep learning model for visual detection and classification of general object from industry. The paper is divided into five chapters. First chapter deals with research of the most used architectures of this type. The second chapter deals with choosing the best fitting architecture for usage in industry. In the third chapter is desribed the procedure of creating your own dataset. The fourth chapter then describes the implementation process itself, so that each sub-part of the architecture was sufficiently described and the results are described in the fifht chapter. The summary and recommended procedures for potential implementation in real environment can be found in the conclusion of this paper.

Description

Citation

DOČKAL, R. Model hlubokého učení vhodný pro vizuální detekci a klasifikaci obecného objektu z průmyslu [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2021.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

bez specializace

Comittee

doc. Ing. Petr Fiedler, Ph.D. (předseda) Ing. Tomáš Macho, Ph.D. (místopředseda) Ing. Zdeněk Havránek, Ph.D. (člen) Ing. Peter Honec, Ph.D. (člen) Ing. Miloslav Richter, Ph.D. (člen)

Date of acceptance

2021-06-15

Defence

Student obhájil bakalářskou práci s výhradami. V rámci obhajoby dokázal přesvědčit komisi o správnosti svých postupů a navrženého řešení. V průběhu odborné rozpravy reagoval na dotazy oponenta, dále vysvětloval, zda se jedná o vlastní implementaci zvolené architektury, a jaké další prvky impelementoval. Student zhodnotil dosažené parametry (rychlost zpracování snímku, přesnost, atp.) Pokusil se upřesnit, co je výstupem sítě, zda se jedná o klasifikaci nebo predikci. Zodpověděl doplňující dotaz týkající se zpracování videa.

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO