Effect of Hydrogen Plasma on Model Corrosion Layers of Bronze
Loading...
Date
Authors
Miková, Petra
Sázavská, Věra
Mika, Filip
Krčma, František
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing
ORCID
Altmetrics
Abstract
Our work is about plasmachemical reduction of model corrosion layers. The model corrosion layers were produced on bronze samples with size of 10 x 10 x 5 mm3, containing Cu and Sn. Concentrated hydrochloric acid was used as a corrosive environment. The application of reduction process in low-pressure low-temperature hydrogen plasma followed. A quartz cylindrical reactor with two outer copper electrodes was used. Plasma discharge was generated in pure hydrogen by a RF generator. Each corroded sample was treated in different conditions (supplied power and a continual or pulsed regime with a variable duty cycle mode). Process monitoring was ensured by optical emission spectroscopy. After treatment, samples were analyzed by SEM and EDX.
Our work is about plasmachemical reduction of model corrosion layers. The model corrosion layers were produced on bronze samples with size of 10 x 10 x 5 mm3, containing Cu and Sn. Concentrated hydrochloric acid was used as a corrosive environment. The application of reduction process in low-pressure low-temperature hydrogen plasma followed. A quartz cylindrical reactor with two outer copper electrodes was used. Plasma discharge was generated in pure hydrogen by a RF generator. Each corroded sample was treated in different conditions (supplied power and a continual or pulsed regime with a variable duty cycle mode). Process monitoring was ensured by optical emission spectroscopy. After treatment, samples were analyzed by SEM and EDX.
Our work is about plasmachemical reduction of model corrosion layers. The model corrosion layers were produced on bronze samples with size of 10 x 10 x 5 mm3, containing Cu and Sn. Concentrated hydrochloric acid was used as a corrosive environment. The application of reduction process in low-pressure low-temperature hydrogen plasma followed. A quartz cylindrical reactor with two outer copper electrodes was used. Plasma discharge was generated in pure hydrogen by a RF generator. Each corroded sample was treated in different conditions (supplied power and a continual or pulsed regime with a variable duty cycle mode). Process monitoring was ensured by optical emission spectroscopy. After treatment, samples were analyzed by SEM and EDX.
Description
Keywords
Citation
Journal of Physics: Conference Series. 2016, vol. 715, issue 1, p. 012006-1-012006-4.
http://iopscience.iop.org/article/10.1088/1742-6596/715/1/012006/
http://iopscience.iop.org/article/10.1088/1742-6596/715/1/012006/
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported

0000-0003-4418-3323 