Multi-Class Weather Classification From Single Images With Convolutional Neural Networks On Embedded Hardware

Loading...
Thumbnail Image

Date

Authors

Bravenec, Tomáš

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

The paper is focused on creating a lightweight machine learning solution for classificationof weather conditions from input images, that can process the input data in real time on embeddeddevices. The approach to the classification uses deep convolutional neural networks architecture withfocus on lightweight design and fast inference, while providing high accuracy results. The focus oncreating lightweight convolutional neural network architecture capable of classification of weatherconditions also enables usage of the network in real time applications at the edge.

Description

Citation

Proceedings I of the 27st Conference STUDENT EEICT 2021: General papers. s. 586-590. ISBN 978-80-214-5942-7
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO