Analytic solutions for singular integral equations and non-homogeneous fractional PDE
dc.contributor.author | Aghili, A. | |
dc.coverage.issue | 2 | cs |
dc.coverage.volume | 6 | cs |
dc.date.accessioned | 2019-01-02T12:37:16Z | |
dc.date.available | 2019-01-02T12:37:16Z | |
dc.date.issued | 2017 | cs |
dc.description.abstract | In the last three decades, transform methods have been used for solving fractional di erential equations, singular integral equations. In this article, the author considered a new class of the inverse Laplace transforms of exponential types. We also evaluated certain types of integrals and solved partial fractional equations of Cauchy type.The result reveals that the transform method is very convenient and e ective. | en |
dc.format | text | cs |
dc.format.extent | 111-125 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Mathematics for Applications. 2017 vol. 6, č. 2, s. 111-125. ISSN 1805-3629 | cs |
dc.identifier.doi | 10.13164/ma.2017.07 | en |
dc.identifier.issn | 1805-3629 | |
dc.identifier.uri | http://hdl.handle.net/11012/137256 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky | cs |
dc.relation.ispartof | Mathematics for Applications | en |
dc.relation.uri | http://ma.fme.vutbr.cz/archiv/6_2/ma_6_2_aghili_final.pdf | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky | cs |
dc.rights.access | openAccess | en |
dc.subject | Laplace transforms | en |
dc.subject | Caputo fractional derivative | en |
dc.subject | nonhomogeneous time fractional partial di erential equation | en |
dc.subject | singular integral equations | en |
dc.title | Analytic solutions for singular integral equations and non-homogeneous fractional PDE | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Ústav matematiky | cs |
eprints.affiliatedInstitution.faculty | Fakulta strojního inženýrství | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- ma_6_2_aghili_final.pdf
- Size:
- 783.48 KB
- Format:
- Adobe Portable Document Format
- Description: