Případová studie na dolování z dat v jazyce Python

Loading...
Thumbnail Image

Date

Authors

Stoika, Anastasiia

Mark

D

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Tato práce se zabývá základními koncepty a technikami procesu získávání znalostí z dat. Cílem práce je demonstrovat dostupné prostředky jazyka Python, které umožňují provádět jednotlivé kroky tohoto procesu. Práce je zaměřena především na metody a techniky detekce odlehlých pozorování, založené na shlukování a klasifikaci. Jedná se o řešení analytické úlohy, která se týká zdrojů dat s omezeným množstvím využitelné informace. Tato kontrolní činnost by měla sloužit k detekci podezřelých prodejních transakcí nějaké společnosti, které mohou znamenat pokusy o podvod jejích prodejci.
This thesis focuses on basic concepts and techniques of the process known as knowledge discovery from data. The goal is to demonstrate available resources in Python, which enable to perform the steps of this process. The thesis addresses several methods and techniques focused on detection of unusual observations, based on clustering and classification. It discusses data mining task for data with the limited amount of inspection resources. This inspection activity should be used to detect unusual transactions of sales of some company that may indicate fraud attempts by some of its salespeople.

Description

Citation

STOIKA, A. Případová studie na dolování z dat v jazyce Python [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2019.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Informační technologie

Comittee

prof. Ing. Tomáš Hruška, CSc. (předseda) doc. RNDr. Jitka Kreslíková, CSc. (místopředseda) doc. Ing. Michal Bidlo, Ph.D. (člen) doc. RNDr. Milan Češka, Ph.D. (člen) Ing. Igor Szőke, Ph.D. (člen)

Date of acceptance

2019-06-12

Defence

Studentka nejprve prezentovala výsledky, kterých dosáhla v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Studentka následně odpověděla na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studentky na položené otázky rozhodla práci hodnotit stupněm D. Otázky u obhajoby: Vysvětlete, jakým způsobem byly kategorické atributy ID a Prod transformovány pro klasifikační model Gaussian Naive Bayes . Neovlivnila tato transformace výsledný klasifikační model (např. vytvořením určitých nových vztahů mezi jednotlivými hodnotami atributů)?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO