Synthesis of Ag and Cu nanoparticles by plasma discharge in inorganic salt solutions

dc.contributor.authorHorák, Jakubcs
dc.contributor.authorNikiforov, Antoncs
dc.contributor.authorKrčma, Františekcs
dc.contributor.authorBřezina, Matějcs
dc.contributor.authorKozáková, Zdenkacs
dc.contributor.authorDostál, Lukášcs
dc.contributor.authorKalina, Michalcs
dc.contributor.authorKalina, Lukášcs
dc.coverage.issue1cs
dc.coverage.volume12cs
dc.date.issued2023-06-30cs
dc.description.abstractIn recent years, nanoparticles have emerged as an important player in a broad range of applications, especially thanks to recent advances in their synthesis. The silver and copper nanoparticles are often used due to their antibacterial and fungicidal activities, and this article presents the results of the nanoparticle synthesis using electrical glow discharge generated directly in a volume of their salt solutions. Therefore, there is no influence of air (i.e. reactive nitrogen species) as it is usual in other commonly used approaches. Nanoparticles were prepared under various experimental conditions, and they were characterized by ultraviolet/visible spectrometry, dynamic light scattering, X-ray photoelectron spectroscopy, and high-resolution scanning electron microscopy. Particles were produced without any surfactant or stabilizing agent, and some of them showed higher resistance against agglomeration during their short-term (days) storage. The nanoparticle formation mechanism was confirmed by the fast camera imaging. Thus, the developed approach can be applied for simple environmentally friendly nanoparticle production for various applications.en
dc.description.abstractIn recent years, nanoparticles have emerged as an important player in a broad range of applications, especially thanks to recent advances in their synthesis. The silver and copper nanoparticles are often used due to their antibacterial and fungicidal activities, and this article presents the results of the nanoparticle synthesis using electrical glow discharge generated directly in a volume of their salt solutions. Therefore, there is no influence of air (i.e. reactive nitrogen species) as it is usual in other commonly used approaches. Nanoparticles were prepared under various experimental conditions, and they were characterized by ultraviolet/visible spectrometry, dynamic light scattering, X-ray photoelectron spectroscopy, and high-resolution scanning electron microscopy. Particles were produced without any surfactant or stabilizing agent, and some of them showed higher resistance against agglomeration during their short-term (days) storage. The nanoparticle formation mechanism was confirmed by the fast camera imaging. Thus, the developed approach can be applied for simple environmentally friendly nanoparticle production for various applications.en
dc.formattextcs
dc.format.extent1-13cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationNanotechnology Reviews. 2023, vol. 12, issue 1, p. 1-13.en
dc.identifier.doi10.1515/ntrev-2022-0549cs
dc.identifier.issn2191-9089cs
dc.identifier.orcid0000-0003-4418-3323cs
dc.identifier.orcid0000-0003-4252-696Xcs
dc.identifier.orcid0000-0003-3877-6587cs
dc.identifier.orcid0000-0003-4098-3649cs
dc.identifier.orcid0000-0002-4224-0841cs
dc.identifier.orcid0000-0001-8127-8175cs
dc.identifier.other184182cs
dc.identifier.researcheridAAE-1012-2020cs
dc.identifier.researcheridAAM-2014-2021cs
dc.identifier.scopus57201179935cs
dc.identifier.scopus35810645600cs
dc.identifier.scopus56121576700cs
dc.identifier.scopus7006307069cs
dc.identifier.scopus55255338000cs
dc.identifier.urihttp://hdl.handle.net/11012/213642
dc.language.isoencs
dc.publisherDe Gruytercs
dc.relation.ispartofNanotechnology Reviewscs
dc.relation.urihttps://www.degruyter.com/document/doi/10.1515/ntrev-2022-0549/htmlcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2191-9089/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectnanoparticleen
dc.subjectplasma dischargeen
dc.subjectsilver nanoparticlesen
dc.subjectcopper nanoparticlesen
dc.subjectdischarge in liquidsen
dc.subjectvirtual cathode in liquiden
dc.subjectsurface plasmon resonanceen
dc.subjectnanoparticle
dc.subjectplasma discharge
dc.subjectsilver nanoparticles
dc.subjectcopper nanoparticles
dc.subjectdischarge in liquids
dc.subjectvirtual cathode in liquid
dc.subjectsurface plasmon resonance
dc.titleSynthesis of Ag and Cu nanoparticles by plasma discharge in inorganic salt solutionsen
dc.title.alternativeSynthesis of Ag and Cu nanoparticles by plasma discharge in inorganic salt solutionsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-184182en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:08:03en
sync.item.modts2025.10.14 09:54:19en
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav fyzikální a spotřební chemiecs
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav chemie materiálůcs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav výkonové elektrotechniky a elektronikycs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1515_ntrev20220549.pdf
Size:
5.57 MB
Format:
Adobe Portable Document Format
Description:
10.1515_ntrev20220549.pdf