General explicit solution of planar weakly delayed linear discrete systems and pasting its solutions
dc.contributor.author | Diblík, Josef | cs |
dc.contributor.author | Boháčková, Hana | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 2013 | cs |
dc.date.issued | 2014-04-29 | cs |
dc.description.abstract | Planar linear discrete systems with constant coefficients and delays are considered. It is assumed that the considered system is weakly delayed. The characteristic equations of such systems are identical with those for the same systems but without delayed terms. In this case, after several steps, the space of solutions with a given starting dimension is pasted into a space with a dimension less than the starting one. In a sense, this situation is analogous to one known in the theory of linear differential systems with constant coefficients and special delays when the initially infinite dimensional space of solutions on the initial interval turns (after several steps) into a finite dimensional set of solutions. For every possible case, explicit general solutions are constructed and, finally, results on the dimensionality of the space of solutions are obtained. | en |
dc.description.abstract | V práci je studován lineární rovinný systém s konstantními koeficienty a s n-zpožděními. Předpokládá se, že systém je slabě zpožděný. Charakteristická rovnice těchto systémů je identická s charakteristickou rovnicí systému, který neobsahuje zpožděné členy. V takovém případě se počáteční dimenze prostoru řešení mění po několika krocích na menší. V jistém smyslu je tato situace analogická podobnému jevu v teorii lineárních diferenciálních systémů s konstantními koeficienty a speciálním zpožděním, kdy původně nekonečně rozměrný prostor řešení (na počátečním intervalu) po několika krocích přejde do konečného prostoru řešení. V práci je konstruováno obecné řešení daného systému pro všechny kombinace kořenů charakteristické rovnice a jsou formulovány výsledky o dimenzi prostoru řešení. | cs |
dc.format | text | cs |
dc.format.extent | 1-37 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Abstract and Applied Analysis. 2014, vol. 2013, issue 1, p. 1-37. | en |
dc.identifier.doi | 10.1155/2014/627295 | cs |
dc.identifier.issn | 1085-3375 | cs |
dc.identifier.orcid | 0000-0001-5009-316X | cs |
dc.identifier.orcid | 0000-0002-1244-2733 | cs |
dc.identifier.other | 107603 | cs |
dc.identifier.researcherid | D-3530-2014 | cs |
dc.identifier.scopus | 6701633618 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/193103 | |
dc.language.iso | en | cs |
dc.publisher | Hindawi | cs |
dc.relation.ispartof | Abstract and Applied Analysis | cs |
dc.relation.uri | https://www.hindawi.com/journals/aaa/2014/627295/ | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1085-3375/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Discrete equation | en |
dc.subject | weakly delayd systems | en |
dc.subject | explicit solution | en |
dc.subject | dimension of the solutions space. | en |
dc.subject | Diskrétní rovnice | |
dc.subject | slabě zpožděné systémy | |
dc.subject | explicitní řešení | |
dc.subject | dimenze prostoru řešení. | |
dc.title | General explicit solution of planar weakly delayed linear discrete systems and pasting its solutions | en |
dc.title.alternative | Obecné řešení rovinného slabě zpožděného lineárního diskrétní systému a spojování jeho řešení | cs |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-107603 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:40:44 | en |
sync.item.modts | 2025.01.17 18:35:43 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta stavební. Ústav matematiky a deskriptivní geometrie | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 627295.pdf
- Size:
- 2.11 MB
- Format:
- Adobe Portable Document Format
- Description:
- 627295.pdf