Metallurgical Processing of CoCrFeNi High-Entropy Alloy

Loading...
Thumbnail Image
Date
2024-12-24
Authors
Müller, Peter
Záděra, Antonín
Čamek, Libor
Myška, Martin
Pernica, Vítězslav
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Polish Academy of Sciences
Altmetrics
Abstract
High-entropy alloys (HEA) is a group of metallic materials that is currently experiencing great development in materials science. While conventional alloys are based on a majority of a primary element with some number of added elements, HEAs are based on multiple (usually more than 5) elements that reach equimolar/equiatomic content. With the right combination of elements, properties can be achieved that could predispose HEAs for practical applications. In the fabrication of HEAs in previous research, pure metals have been predominantly used as the charging material. However, the use of common industrial charge with limited purity is crucial for the more economically viable use of HEAs in industry. Such a charge material may contain accompanying elements which may have an undesirable effect on the properties of the alloy. In order to achieve optimum alloy properties, it is necessary to minimise their content using various metallurgical processes. The aim of the work was the metallurgical processing of CoCrFeNi alloy melted from scrap metal in an induction furnace. The desired reduction of carbon (to 100 ppm) and nitrogen content (from 660 to ~60 ppm) was reached by using carbon reaction under vacuum. Significant reduction in oxygen content (to ~120 ppm) was reached after a deoxidation with aluminium and slight reduction in sulphur content (~25%, to 120 ppm) was reached after a desulphurisation with rare earth metals.
Description
Citation
Archives of Foundry Engineering. 2024, vol. 24, issue 4, p. 56-62.
https://journals.pan.pl/dlibra/publication/151310/edition/133701/content
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO