Fatigue behavior of high strength steels under various levels of corrosion

Loading...
Thumbnail Image

Authors

Malíková, Lucie
Benešová, Anna
Al Khazali, Mohammad Sami
Seitl, Stanislav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

Propagation of a short fatigue crack directly from a corrosion pit is investigated within this work. A corroded rectangular specimen subjected to remote tensile cyclic loading is modelled via finite element method. Propagation of the angled crack is then controlled by both loading modes (I + II). A parametric study is performed to estimate the directions of further crack propagation for various geometrical configurations. Corrosion pit size is varied to simulate various levels of corrosion, and the analysis is carried out for a range of crack lengths and different initial crack inclination angles. Assumptions of linear elastic fracture mechanics are accepted, and classical maximum tangential stress criterion is applied to calculate the angles of crack deflection. Results obtained are discussed and are prepared to mutual comparison with observations of decrease of fracture mechanical/fatigue properties on real specimens subjected to relevant experiments.
Propagation of a short fatigue crack directly from a corrosion pit is investigated within this work. A corroded rectangular specimen subjected to remote tensile cyclic loading is modelled via finite element method. Propagation of the angled crack is then controlled by both loading modes (I + II). A parametric study is performed to estimate the directions of further crack propagation for various geometrical configurations. Corrosion pit size is varied to simulate various levels of corrosion, and the analysis is carried out for a range of crack lengths and different initial crack inclination angles. Assumptions of linear elastic fracture mechanics are accepted, and classical maximum tangential stress criterion is applied to calculate the angles of crack deflection. Results obtained are discussed and are prepared to mutual comparison with observations of decrease of fracture mechanical/fatigue properties on real specimens subjected to relevant experiments.

Description

Citation

Procedia Structural Integrity. 2024, vol. 52, p. 376-381.
https://www.sciencedirect.com/science/article/pii/S2452321623007357

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO