Detekce dopravních značek v obraze a videu

Loading...
Thumbnail Image

Date

Authors

Kočica, Filip

Mark

B

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Tato práce řeší problematiku detekce dopravního značení za pomoci moderních technik zpracování obrazu. K řešení byla použita speciální architektura hluboké konvoluční neuronové sítě zvaná YOLO, tedy You Only Look Once, která řeší detekci i klasifikaci objektů v jednom kroce, což celý proces značně urychluje. Práce pojednává také o porovnání úspěšnosti modelů trénovaných na reálných a syntetických datových sadách. Podařilo se dosáhnout úspěšnosti 63.4% mAP při použití modelu trénovaného na reálných datech a úspěšnosti 82.3% mAP při použití modelu trénovaného na datech syntetických. Vyhodnocení jednoho snímku trvá na průměrně výkonném grafickém čipu ~40.4ms a na nadprůměrně výkonném čipu ~3.9ms. Přínosem této práce je skutečnost, že model neuronové sítě trénovaný na syntetických datech může za určitých podmínek dosahovat podobných či lepších výsledků, než model trénovaný na reálných datech. To může usnadnit proces tvorby detektoru o nutnost anotovat velké množství obrázků.
This thesis deals with the traffic sign detection problematics using modern techniques in image processing. Special architecture of deep convolutional neural network YOLO, i.e. You Only Look Once, which performs both detection and classification in one step, has been used. This architecture allows object detector to work on very high speeds. This thesis also deals with comparison of models trained on real and synthetic datasets. The best model trained on real dataset has reached 63.4% mAP success rate and 82.3% mAP when trained on synthetic dataset. Evaluation of one image takes about ~40.4ms on average graphics processing unit and ~3.9ms on higher than average graphics processing unit. The benefit of this thesis is that under certain conditions neural network model trained on synthetic data can achieve same or even better results than model trained on real data. This may simplify process of object detector development since it is not necessary to annotate large number of images.

Description

Citation

KOČICA, F. Detekce dopravních značek v obraze a videu [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2019.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Informační technologie

Comittee

prof. Dr. Ing. Pavel Zemčík, dr. h. c. (předseda) doc. Mgr. Adam Rogalewicz, Ph.D. (místopředseda) Ing. Michal Fusek, Ph.D. (člen) doc. Ing. Tomáš Martínek, Ph.D. (člen) doc. Ing. Petr Matoušek, Ph.D., M.A. (člen)

Date of acceptance

2019-06-10

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B. Otázky u obhajoby: Můžete v tabulce zobrazit dohromady všechny výsledky z kapitolky 5.4? Můžete vysvětlit přesněji nastavení detektoru, který jste použil? Můžete například zobrazit všechny "anchors" při vámi použitými "mask" a zobrazit, jaké se vybraly "kotvy" po jejich přepočítání?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO