A dynamical system with random parameters as a mathematical model of real phenomena
dc.contributor.author | Diblík, Josef | cs |
dc.contributor.author | Dzhalladova, Irada | cs |
dc.contributor.author | Růžičková, Miroslava | cs |
dc.coverage.issue | 11 | cs |
dc.coverage.volume | 11 | cs |
dc.date.accessioned | 2020-08-04T11:01:52Z | |
dc.date.available | 2020-08-04T11:01:52Z | |
dc.date.issued | 2019-10-30 | cs |
dc.description.abstract | In many cases, it is difcult to nd a solution to a system of difference equations with random structure in a closed form. Thus, a random process, which is the solution to such a system, can be described in another way, for example, by its moments. In this paper, we consider systems of linear difference equations whose coefcients depend on a random Markov or semi-Markov chain with jumps. The moment equations are derived for such a system when the random structure is determined by a Markov chain with jumps. As an example, three processes: Threats to security in cyberspace, radiocarbon dating, and stability of the foreign currency exchange market are modelled by systems of difference equations with random parameters that depend on a semi-Markov or Markov process. The moment equations are used to obtain the conditions under which the processes are stable. | en |
dc.format | text | cs |
dc.format.extent | 1-14 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Symmetry. 2019, vol. 11, issue 11, p. 1-14. | en |
dc.identifier.doi | 10.3390/sym11111338 | cs |
dc.identifier.issn | 2073-8994 | cs |
dc.identifier.other | 159586 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/184671 | |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartof | Symmetry | cs |
dc.relation.uri | https://www.mdpi.com/2073-8994/11/11/1338 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2073-8994/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Markov and semi-Markov chain | en |
dc.subject | random transformation of solutions | en |
dc.subject | L2-stability | en |
dc.subject | jumps of solutions | en |
dc.subject | moment equations | en |
dc.title | A dynamical system with random parameters as a mathematical model of real phenomena | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-159586 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2020.08.04 13:01:52 | en |
sync.item.modts | 2020.08.04 12:33:12 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta stavební. Centrum AdMaS - VP2 - KCE | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta stavební. Ústav matematiky a deskriptivní geometrie | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- symmetry1101338.pdf
- Size:
- 313.35 KB
- Format:
- Adobe Portable Document Format
- Description:
- symmetry1101338.pdf