Damage behaviour of quasi-brittle composites: mathematical and computational aspects

Loading...
Thumbnail Image

Authors

Vala, Jiří
Tomáš, Jiří

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

In the present paper, an evaluation of the damage behaviour of quasi-brittle composites exposed to mechanical, thermal, and other loads is studied by means of viscoelastic and/or viscoplastic material models, applying some non-local regularisation techniques to the initiation and development of damages. The methods above are presented as a strong tool for a deeper understanding of material structures in miscellaneous engineering disciplines like civil, mechanical, and many others. Nevertheless, all of the software packages reflect certain compromises between the need for effective computational tools, with parameters obtained from inexpensive experiments, within the possibilities and the complexity of both physical and geometrical descriptions of structure deformation within processes. The article is devoted to the mathematical aspects regarding a considerably wide class of computational modelling problems, emphasising the following ones: (i) the existence and the uniqueness of solutions of engineering problems formulated in terms of the deterministic initial and boundary value problems of partial differential equations theory; (ii) the problems of convergence of computational algorithms applied to (i). Both aspects have numerous references to possible generalisations and investigations connected with open problems.
In the present paper, an evaluation of the damage behaviour of quasi-brittle composites exposed to mechanical, thermal, and other loads is studied by means of viscoelastic and/or viscoplastic material models, applying some non-local regularisation techniques to the initiation and development of damages. The methods above are presented as a strong tool for a deeper understanding of material structures in miscellaneous engineering disciplines like civil, mechanical, and many others. Nevertheless, all of the software packages reflect certain compromises between the need for effective computational tools, with parameters obtained from inexpensive experiments, within the possibilities and the complexity of both physical and geometrical descriptions of structure deformation within processes. The article is devoted to the mathematical aspects regarding a considerably wide class of computational modelling problems, emphasising the following ones: (i) the existence and the uniqueness of solutions of engineering problems formulated in terms of the deterministic initial and boundary value problems of partial differential equations theory; (ii) the problems of convergence of computational algorithms applied to (i). Both aspects have numerous references to possible generalisations and investigations connected with open problems.

Description

Citation

Applied Sciences-Basel. 2025, vol. 15, issue 8, p. 1-21.
https://www.mdpi.com/2076-3417/15/8/4214

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO