Existence and uniqueness results for nonlinear fractional Langevin integro-differential equations with boundary conditions

dc.contributor.authorLachouri, Adel
dc.contributor.authorArdjouni, Abdelouaheb
dc.contributor.authorDjoudi, Ahcene
dc.coverage.issue2cs
dc.coverage.volume11cs
dc.date.accessioned2023-01-02T07:54:44Z
dc.date.available2023-01-02T07:54:44Z
dc.date.issued2022cs
dc.description.abstractThis paper is devoted to the study of nonlinear fractional Langevin inte- gro differential equations with boundary conditions. Some effective results concern- ing the existence and uniqueness are obtained by applying the Banach contraction mapping principle and the Schauder fixed point theorem. An example is presented illustrating the effectiveness of the theoretical results.en
dc.formattextcs
dc.format.extent133-142cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMathematics for Applications. 2022 vol. 11, č. 2, s. 133-142. ISSN 1805-3629cs
dc.identifier.doi10.13164/ma.2022.10en
dc.identifier.issn1805-3629
dc.identifier.urihttp://hdl.handle.net/11012/208722
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.relation.ispartofMathematics for Applicationsen
dc.relation.urihttp://ma.fme.vutbr.cz/archiv/11_2/ma_11_2_%20ardjouni_et_al_final.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.rights.accessopenAccessen
dc.subjectfractional Langevin equation, Riemann–Liouville fractional derivative, Caputo fractional derivative, existence, uniqueness, fixed pointen
dc.titleExistence and uniqueness results for nonlinear fractional Langevin integro-differential equations with boundary conditionsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentÚstav matematikycs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ma_11_2_ ardjouni_et_al_final.pdf
Size:
651.88 KB
Format:
Adobe Portable Document Format
Description:
Collections