Cardiac Pathologies Detection and Classification in 12-lead ECG

Loading...
Thumbnail Image

Authors

Smíšek, Radovan
Němcová, Andrea
Šaclová, Lucie
Smital, Lukáš
Vítek, Martin
Kozumplík, Jiří

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

Background: Automatic detection and classification of cardiac abnormalities in ECG is one of the basic and often solved problems. The aim of this paper is to present a proposed algorithm for ECG classification into 19 classes. This algorithm was created within PhysioNet/CinC Challenge 2020, name of our team was HITTING. Methods: Our algorithm detects each pathology separately according to the extracted features and created rules. Signals from the 6 databases were used. Detector of QRS complexes, T-waves and P-waves including detection of their boundaries was designed. Then, the most common morphology of the QRS was found in each record. All these QRS were averaged. Features were extracted from the averaged QRS and from intervals between detected points. Appropriate features and rules were set using classification trees. Results: Our approach achieved a challenge validation score of 0.435, and full test score of 0.354, placing us 11 out of 41 in the official ranking. Conclusion: The advantage of our algorithm is easy interpretation. It is obvious according to which features algorithm decided and what thresholds were set.
Background: Automatic detection and classification of cardiac abnormalities in ECG is one of the basic and often solved problems. The aim of this paper is to present a proposed algorithm for ECG classification into 19 classes. This algorithm was created within PhysioNet/CinC Challenge 2020, name of our team was HITTING. Methods: Our algorithm detects each pathology separately according to the extracted features and created rules. Signals from the 6 databases were used. Detector of QRS complexes, T-waves and P-waves including detection of their boundaries was designed. Then, the most common morphology of the QRS was found in each record. All these QRS were averaged. Features were extracted from the averaged QRS and from intervals between detected points. Appropriate features and rules were set using classification trees. Results: Our approach achieved a challenge validation score of 0.435, and full test score of 0.354, placing us 11 out of 41 in the official ranking. Conclusion: The advantage of our algorithm is easy interpretation. It is obvious according to which features algorithm decided and what thresholds were set.

Description

Citation

Computing in Cardiology. 2020, vol. 47, issue 1, p. 1-4.
http://www.cinc.org/archives/2020/pdf/CinC2020-171.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO