Dimensional crossover of microscopic magnetic metasurfaces for magnetic field amplification

dc.contributor.authorLejeune, Nicolascs
dc.contributor.authorFourneau, Emilecs
dc.contributor.authorBarrera, Aleixcs
dc.contributor.authorMorris, Olivercs
dc.contributor.authorLeonard, Oscarcs
dc.contributor.authorArregi Uribeetxebarria, Jon Andercs
dc.contributor.authorNavau, Carlescs
dc.contributor.authorUhlíř, Vojtěchcs
dc.contributor.authorBending, Simoncs
dc.contributor.authorPalau, Annacs
dc.contributor.authorSilhanek, Alejandro Vladimirocs
dc.coverage.issue7cs
dc.coverage.volume12cs
dc.date.accessioned2025-02-28T13:53:56Z
dc.date.available2025-02-28T13:53:56Z
dc.date.issued2024-07-01cs
dc.description.abstractTransformation optics applied to low frequency magnetic systems have been recently implemented to design magnetic field concentrators and cloaks with superior performance. Although this achievement has been amply demonstrated theoretically and experimentally in bulk 3D macrostructures, the performance of these devices at low dimensions remains an open question. In this work, we numerically investigate the non-monotonic evolution of the gain of a magnetic metamaterial field concentrator as the axial dimension is progressively shrunk. In particular, we show that in planar structures, the role played by the diamagnetic components becomes negligible, whereas the paramagnetic elements increase their magnetic field channeling efficiency. This is further demonstrated experimentally by tracking the gain of superconductor-ferromagnet concentrators through the superconducting transition. Interestingly, for thicknesses where the diamagnetic petals play an important role in the concentration gain, they also help to reduce the stray field of the concentrator, thus limiting the perturbation of the external field (invisibility). Our findings establish a roadmap and set clear geometrical limits for designing low dimensional magnetic field concentrators.en
dc.formattextcs
dc.format.extent1-7cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAPL Materials. 2024, vol. 12, issue 7, p. 1-7.en
dc.identifier.doi10.1063/5.0217500cs
dc.identifier.issn2166-532Xcs
dc.identifier.orcid0000-0002-7376-2757cs
dc.identifier.orcid0000-0002-0512-6329cs
dc.identifier.other190012cs
dc.identifier.researcheridM-9810-2016cs
dc.identifier.researcheridE-6860-2011cs
dc.identifier.scopus55248382600cs
dc.identifier.urihttps://hdl.handle.net/11012/250083
dc.language.isoencs
dc.publisherAIP Publishingcs
dc.relation.ispartofAPL Materialscs
dc.relation.urihttps://pubs.aip.org/aip/apm/article/12/7/071126/3305315/Dimensional-crossover-of-microscopic-magneticcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2166-532X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectmicroscopic magnetic metasurfacesen
dc.titleDimensional crossover of microscopic magnetic metasurfaces for magnetic field amplificationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-190012en
sync.item.dbtypeVAVen
sync.item.insts2025.02.28 14:53:56en
sync.item.modts2025.02.28 10:32:07en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Nanomagnetismus a spintronikacs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
071126_1_5.0217500.pdf
Size:
5.69 MB
Format:
Adobe Portable Document Format
Description:
file 071126_1_5.0217500.pdf