Frontally polymerized foams: thermodynamic and kinetical aspects of front hindrance by particles

dc.contributor.authorLepcio, Petrcs
dc.contributor.authorDaguerre-Bradford, Johncs
dc.contributor.authorCristadoro, Anna Mariacs
dc.contributor.authorSchuette, Markuscs
dc.contributor.authorLesser, Alan J.cs
dc.coverage.issue8cs
dc.coverage.volume10cs
dc.date.accessioned2024-02-16T11:22:37Z
dc.date.available2024-02-16T11:22:37Z
dc.date.issued2023-07-31cs
dc.description.abstractFrontal polymerization (FP) is a solvent-free, energy-efficient process where a self-propagating polymerization reaction with a characteristic sharp temperature gradient at the front head propagates through the resin to provide the curing conditions. It relies on the enthalpic balance, which spreads the reaction to unreacted resin in the neighborhood. Therefore, the FP is sensitive to the presence of non-reactive volumes, such as boundaries, fillers, or other additives, that retain heat from the front but produce no enthalpy in return. On the other hand, the front's high temperature could be used to initiate other processes, such as foaming, incorporating them into a simple single-step fabrication procedure. This study used silica particles of two different sizes (14 nm and 200-300 nm) in an epoxy-based FP foam as a representative filler to probe the constraints imposed by non-reactive additives. The presence of particles visibly hindered the front propagation, increased the foam density and even corrupted the frontal regime in some cases. We show that preheating or chemical composition changes are viable approaches to address the fillers' adverse effects. Furthermore, we present evidence that the reduced reaction enthalpy caused by silica nanoparticles, was balanced by the lower heat capacity of our model system. At the same time, the front hindrance was attributed to changes in reaction kinetics and the heat distribution around the front. These results set up essential narratives for the design and practical applications of frontally polymerized foams with non-reactive fillers.en
dc.formattextcs
dc.format.extent2989-2996cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMaterials Horizons. 2023, vol. 10, issue 8, p. 2989-2996.en
dc.identifier.doi10.1039/d2mh01553fcs
dc.identifier.issn2051-6355cs
dc.identifier.orcid0000-0002-7056-5571cs
dc.identifier.other183780cs
dc.identifier.researcheridAAB-9822-2019cs
dc.identifier.scopus55991983000cs
dc.identifier.urihttps://hdl.handle.net/11012/245010
dc.language.isoencs
dc.publisherROYAL SOC CHEMISTRYcs
dc.relation.ispartofMaterials Horizonscs
dc.relation.urihttps://pubs.rsc.org/en/content/articlelanding/2023/MH/D2MH01553Fcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2051-6355/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectcompositesen
dc.titleFrontally polymerized foams: thermodynamic and kinetical aspects of front hindrance by particlesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-183780en
sync.item.dbtypeVAVen
sync.item.insts2024.02.16 12:22:37en
sync.item.modts2024.02.16 12:13:38en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé polymerní materiály a kompozitcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
d2mh01553f.pdf
Size:
2.16 MB
Format:
Adobe Portable Document Format
Description:
file d2mh01553f.pdf