Single-shot super-resolution quantitative phase imaging allowed by coherence gate shaping

dc.contributor.authorĎuriš, Miroslavcs
dc.contributor.authorBouchal, Petrcs
dc.contributor.authorChmelík, Radimcs
dc.coverage.issue4cs
dc.coverage.volume8cs
dc.date.issued2023-04-03cs
dc.description.abstractBiomedical and metasurface researchers repeatedly reach for quantitative phase imaging (QPI) as their primary imaging technique due to its high-throughput, label-free, quantitative nature. So far, very little progress has been made toward achieving super-resolution in QPI. However, the possible super-resolving QPI would satisfy the need for quantitative observation of previously unresolved biological specimen features and allow unprecedented throughputs in the imaging of dielectric metasurfaces. Here we present a method capable of real-time super-resolution QPI, which we achieve by shaping the coherence gate in the holographic microscope with partially coherent illumination. Our approach is based on the fact that the point spread function (PSF) of such a system is a product of the diffraction-limited spot and the coherence-gating function, which is shaped similarly to the superoscillatory hotspot. The product simultaneously produces the PSF with a super-resolution central peak and minimizes sidelobe effects commonly devaluating the superoscillatory imaging. The minimization of sidelobes and resolution improvement co-occur in the entire field of view. Therefore, for the first time, we achieve a single-shot widefield super-resolution QPI. We demonstrate here resolution improvement on simulated as well as experimental data. A phase resolution target image shows a resolving power improvement of 19%. Finally, we show the practical feasibility by applying the proposed method to the imaging of biological specimens.en
dc.formattextcs
dc.format.extent1-9cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAPL Photonics. 2023, vol. 8, issue 4, p. 1-9.en
dc.identifier.doi10.1063/5.0127950cs
dc.identifier.issn2378-0967cs
dc.identifier.orcid0000-0003-2383-1512cs
dc.identifier.orcid0000-0002-6159-8099cs
dc.identifier.orcid0000-0001-5410-4794cs
dc.identifier.other183361cs
dc.identifier.researcheridG-8464-2014cs
dc.identifier.researcheridD-7616-2012cs
dc.identifier.scopus6603192372cs
dc.identifier.urihttp://hdl.handle.net/11012/209501
dc.language.isoencs
dc.publisherAIP Publishingcs
dc.relation.ispartofAPL Photonicscs
dc.relation.urihttps://pubs.aip.org/aip/app/article/8/4/046103/2882470/Single-shot-super-resolution-quantitative-phasecs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2378-0967/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectSingle-shot super-resolutionen
dc.subjectQuantitative phase imagingen
dc.subjectCoherence gateen
dc.titleSingle-shot super-resolution quantitative phase imaging allowed by coherence gate shapingen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-183361en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:48:21en
sync.item.modts2025.01.17 20:32:57en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Experimentální biofotonikacs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
046103_1_5.0127950.pdf
Size:
6.51 MB
Format:
Adobe Portable Document Format
Description:
046103_1_5.0127950.pdf