Application of Optimization Algorithms to Support Penetration Testing

but.event.date23.04.2024cs
but.event.titleSTUDENT EEICT 2024cs
dc.contributor.authorŽáček, Dominik
dc.contributor.authorLazarov, Willi
dc.date.accessioned2024-07-09T07:38:37Z
dc.date.available2024-07-09T07:38:37Z
dc.date.issued2024cs
dc.description.abstractThis paper presents a novel approach to support the pre-engagement phase of penetration testing, where testing tasks are assigned to penetration testers based on their knowledge and experience to ensure the most appropriate selection. To apply and verify our approach, we developed an automated tool that uses optimization algorithms for the task assignment process. Experimental testing shows that the application of algorithms based on optimization problems in the first phase of penetration testing could be a way to increase its effectiveness.en
dc.formattextcs
dc.format.extent143-146cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 30st Conference STUDENT EEICT 2024: General papers. s. 143-146. ISBN 978-80-214-6231-1cs
dc.identifier.isbn978-80-214-6231-1
dc.identifier.issn2788-1334
dc.identifier.urihttps://hdl.handle.net/11012/249218
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 30st Conference STUDENT EEICT 2024: General papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectpenetration testingen
dc.subjectcybersecurityen
dc.subjectoptimizationen
dc.subjecttask assignmenten
dc.subjectlinear programmingen
dc.titleApplication of Optimization Algorithms to Support Penetration Testingen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
143-eeict-2024.pdf
Size:
583.76 KB
Format:
Adobe Portable Document Format
Description: