Discrete-Time Modeling of Interturn Short Circuits in Interior PMSMs

dc.contributor.authorZezula, Lukášcs
dc.contributor.authorKozovský, Matúšcs
dc.contributor.authorBuchta, Luděkcs
dc.contributor.authorBlaha, Petrcs
dc.coverage.issue1cs
dc.coverage.volume73cs
dc.date.accessioned2026-01-06T14:53:52Z
dc.date.issued2025-09-23cs
dc.description.abstractThis article describes the discrete-time modeling approach for interturn short circuits in interior permanent magnet synchronous motors with concentrated windings. The derived model has been designed to embody a tradeoff between precision and complexity, facilitating model-based fault diagnostics and mitigation. A continuous-time model incorporating universal series-parallel stator winding connection and radial permanent magnet fluxes is developed in the stator variables and transformed into the rotor reference frame, including also the electromagnetic torque. The transformed model undergoes discretization using the matrix exponential-based technique, wherein the electrical angular velocity and angle are considered time-varying parameters. The resulting model is subsequently expanded to consider the motor connection resistance via perturbation techniques. In the laboratory experiments, we validate the dynamical properties of the derived model by comparing its outputs with the experimental data and waveforms generated by the forward Euler-based approximation. We thus demonstrate the improvements over the conventional discretization.en
dc.description.abstractThis article describes the discrete-time modeling approach for interturn short circuits in interior permanent magnet synchronous motors with concentrated windings. The derived model has been designed to embody a tradeoff between precision and complexity, facilitating model-based fault diagnostics and mitigation. A continuous-time model incorporating universal series-parallel stator winding connection and radial permanent magnet fluxes is developed in the stator variables and transformed into the rotor reference frame, including also the electromagnetic torque. The transformed model undergoes discretization using the matrix exponential-based technique, wherein the electrical angular velocity and angle are considered time-varying parameters. The resulting model is subsequently expanded to consider the motor connection resistance via perturbation techniques. In the laboratory experiments, we validate the dynamical properties of the derived model by comparing its outputs with the experimental data and waveforms generated by the forward Euler-based approximation. We thus demonstrate the improvements over the conventional discretization.en
dc.formattextcs
dc.format.extent1425-1436cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationIEEE Transactions on Industrial Electronics. 2025, vol. 73, issue 1, p. 1425-1436.en
dc.identifier.doi10.1109/TIE.2025.3591680cs
dc.identifier.issn0278-0046cs
dc.identifier.orcid0000-0002-3183-2438cs
dc.identifier.orcid0000-0002-1547-1003cs
dc.identifier.orcid0000-0002-8954-3495cs
dc.identifier.orcid0000-0001-5534-2065cs
dc.identifier.other200081cs
dc.identifier.researcheridE-2371-2018cs
dc.identifier.researcheridG-8085-2014cs
dc.identifier.researcheridD-6854-2012cs
dc.identifier.scopus56028720700cs
dc.identifier.scopus7006825993cs
dc.identifier.urihttps://hdl.handle.net/11012/255776
dc.language.isoencs
dc.relation.ispartofIEEE Transactions on Industrial Electronicscs
dc.relation.urihttps://ieeexplore.ieee.org/document/11176156cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0278-0046/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectdiscrete-time systemsen
dc.subjectfault currentsen
dc.subjectfault diagnosisen
dc.subjectmathematical modelen
dc.subjectmodel checkingen
dc.subjectpermanent magnet motorsen
dc.subjectshort-circuit currentsen
dc.subjectdiscrete-time systems
dc.subjectfault currents
dc.subjectfault diagnosis
dc.subjectmathematical model
dc.subjectmodel checking
dc.subjectpermanent magnet motors
dc.subjectshort-circuit currents
dc.titleDiscrete-Time Modeling of Interturn Short Circuits in Interior PMSMsen
dc.title.alternativeDiscrete-Time Modeling of Interturn Short Circuits in Interior PMSMsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-200081en
sync.item.dbtypeVAVen
sync.item.insts2026.01.06 15:53:52en
sync.item.modts2026.01.06 15:33:19en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Kybernetika a robotikacs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
published_verze.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
Description:
file published_verze.pdf