Periodická řešení neautonomní Duffingovy rovnice
but.committee | prof. RNDr. Josef Šlapal, CSc. (předseda) prof. RNDr. Miloslav Druckmüller, CSc. (místopředseda) doc. Ing. Luděk Nechvátal, Ph.D. (člen) doc. RNDr. Jiří Tomáš, Dr. (člen) prof. Mgr. Pavel Řehák, Ph.D. (člen) Prof. Bruno Rubino (člen) Assoc. Prof. Matteo Colangeli (člen) Assoc. Prof. Massimiliano Giuli (člen) | cs |
but.defence | Student introduced his diploma thesis to the committee members and explained the fundaments of his topic called Periodic solutions to nonautonmous Duffing equation. He answered the opponent's question satisfactorily. Question from Matteo Colangeli was about the possible extension of this topic and it was answered too. | cs |
but.jazyk | angličtina (English) | |
but.program | Aplikované vědy v inženýrství | cs |
but.result | práce byla úspěšně obhájena | cs |
dc.contributor.advisor | Šremr, Jiří | en |
dc.contributor.author | Zamir, Qazi Hamid | en |
dc.contributor.referee | Řehák, Pavel | en |
dc.date.accessioned | 2020-10-29T10:07:45Z | |
dc.date.available | 2020-10-29T10:07:45Z | |
dc.date.created | 2020 | cs |
dc.description.abstract | Ordinary differential equations of various types appear in the mathematical modelling in mechanics. Differential equations obtained are usually rather complicated nonlinear equations. However, using suitable approximations of nonlinearities, one can derive simple equations that are either well known or can be studied analytically. An example of such "approximative" equation is the so-called Duffing equation. Hence, the question on the existence of a periodic solution to the Duffing equation is closely related to the existence of periodic vibrations of the corresponding nonlinear oscillator. | en |
dc.description.abstract | Ordinary differential equations of various types appear in the mathematical modeling in mechanics. Differential equations obtained are usually rather complicated nonlinear equations. However, using suitable approximations of nonlinearities, one can derive simple equations that are either well known or can be studied analytically. An example of such "approximative" equation is the so-called Duffing equation. Hence, the question on the existence of a periodic solution to the Duffing equation is closely related to the existence of periodic vibrations of the corresponding nonlinear oscillator. | cs |
dc.description.mark | B | cs |
dc.identifier.citation | ZAMIR, Q. Periodická řešení neautonomní Duffingovy rovnice [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2020. | cs |
dc.identifier.other | 129745 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/195542 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství | cs |
dc.rights | Standardní licenční smlouva - přístup k plnému textu bez omezení | cs |
dc.subject | Differential equation | en |
dc.subject | Duffing equation | en |
dc.subject | periodic solution | en |
dc.subject | existence | en |
dc.subject | uniqueness. | en |
dc.subject | Differential equation | cs |
dc.subject | Duffing equation | cs |
dc.subject | periodic solution | cs |
dc.subject | existence | cs |
dc.subject | uniqueness. | cs |
dc.title | Periodická řešení neautonomní Duffingovy rovnice | en |
dc.title.alternative | Periodic solutions to nonautonmous Duffing equation | cs |
dc.type | Text | cs |
dc.type.driver | masterThesis | en |
dc.type.evskp | diplomová práce | cs |
dcterms.dateAccepted | 2020-09-30 | cs |
dcterms.modified | 2020-10-01-10:54:33 | cs |
eprints.affiliatedInstitution.faculty | Fakulta strojního inženýrství | cs |
sync.item.dbid | 129745 | en |
sync.item.dbtype | ZP | en |
sync.item.insts | 2021.11.10 13:14:12 | en |
sync.item.modts | 2021.11.10 12:18:47 | en |
thesis.discipline | Matematické inženýrství | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematiky | cs |
thesis.level | Inženýrský | cs |
thesis.name | Ing. | cs |