Geodesic mappings onto generalized m-Ricci-symmetric spaces

dc.contributor.authorBerezovski, Vladimircs
dc.contributor.authorCherevko, Yevhencs
dc.contributor.authorHinterleitner, Irenacs
dc.contributor.authorPeška, Patrikcs
dc.coverage.issue13cs
dc.coverage.volume10cs
dc.date.accessioned2023-03-28T14:54:19Z
dc.date.available2023-03-28T14:54:19Z
dc.date.issued2022-06-21cs
dc.description.abstractIn this paper, we study geodesic mappings of spaces with affine connections onto generalized 2-, 3-, and m-Ricci-symmetric spaces. In either case, the main equations for the mappings are obtained as a closed system of linear differential equations of the Cauchy type in the covariant derivatives. For the systems, we have found the maximum number of essential parameters on which the solutions depend. These results generalize the properties of geodesic mappings onto symmetric, recurrent, and also 2-, 3-, and m-(Ricci-)symmetric spaces with affine connections.en
dc.formattextcs
dc.format.extent1-12cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMathematics. 2022, vol. 10, issue 13, p. 1-12.en
dc.identifier.doi10.3390/math10132165cs
dc.identifier.issn2227-7390cs
dc.identifier.other182470cs
dc.identifier.urihttp://hdl.handle.net/11012/209257
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofMathematicscs
dc.relation.urihttps://www.mdpi.com/2227-7390/10/13/2165/htmcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2227-7390/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectgeodesic mappingen
dc.subjectspace with affine connectionsen
dc.subjectm-Ricci-symmetric spaceen
dc.subjectCauchy-type differential equationsen
dc.titleGeodesic mappings onto generalized m-Ricci-symmetric spacesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-182470en
sync.item.dbtypeVAVen
sync.item.insts2023.03.28 16:54:18en
sync.item.modts2023.03.28 16:15:32en
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav matematiky a deskriptivní geometriecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematics1002165v2.pdf
Size:
291.92 KB
Format:
Adobe Portable Document Format
Description:
mathematics1002165v2.pdf