Textově závislé rozpoznávání mluvčího

Loading...
Thumbnail Image
Date
Authors
ORCID
Mark
B
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Cílem této bakalářské práce bylo navrhnout systém pro textově závislé rozpoznávání mluvčího. Bylo otestováno několik přístupů na databázi MIT, která obsahuje nahrávky průměrné délky 0,46s. Z otestovaných přístupů se jeví jako nejlepší kombinace systému DTW s využitím odhadu posteriorních pravděpodobností fonémů (posteriogramu) jako výstupu z Fonémového rozpoznávače, a akustického SID systému založeného na iVektorech a PLDA (Probabilistic Linear Component Analysis). Fúze těchto dvou systémů pomocí Neuronové sítě dosahuje nejlepších výsledků (EER) a to 17,84% pro ženy a 16,38% pro muže, což je relativní zlepšení 49,9% u žen a 54,2% u mužů oproti samostatnému akustickému rozpoznávání.
The goal of this Bachelor's thesis was to design text dependent speaker recognition system. There were few systems tested for MIT database. This database contains recordings of 0.46s average length. Best case for recognition is to use a combination of DTW system using posterior probability estimation (posteriograms) as an output of Phoneme recognizer and acoustic SID system based on iVectors and PLDA (Probabilistic Linear Component Analysis). Fusion with Neural network gives the best results (EER). These are 17.84% EER for women and 16.38% for men. It's 49.9% relative improvement for women and 54.2% for men against acoustic recognition alone.
Description
Citation
FUX, J. Textově závislé rozpoznávání mluvčího [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2013.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
Informační technologie
Comittee
doc. Dr. Ing. Jan Černocký (předseda) doc. Ing. Vladimír Janoušek, Ph.D. (místopředseda) Ing. Tomáš Martínek, Ph.D. (člen) Ing. Petr Matoušek, Ph.D., M.A. (člen) Dr. Ing. Petr Peringer (člen)
Date of acceptance
2013-06-10
Defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se pak seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B. Otázky u obhajoby: Proc si myslíte, že zvyšování počtu neuronu ve fúzi výsledek spíše zhoršuje? Jakou to má to souvislost se zhoršováním výsledků při zvyšování počtu Gaussových komponent v GMM?
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO