Augmentation Technique For Artificial Phase-Contrast Microscopy Images Generation For The Training Of Deep Learning Algorithms

Loading...
Thumbnail Image

Date

Authors

Mívalt, Filip

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

Phase contrast segmentation is crucial for various biological tasks such us quantitative, comparative or single cell level analysis. The popularity of image segmentation using deep learning strategies has been transferred into the field of microscopy imaging as well. Since the huge amount of training data is usually required, the annotation is time-consuming and lengthy. This paper introduces the method and augmentation techniques for artificial phase-contrast images generation aiming at the training of deep learning algorithms.

Description

Citation

Proceedings of the 25st Conference STUDENT EEICT 2019. s. 199-202. ISBN 978-80-214-5735-5
http://www.feec.vutbr.cz/EEICT/

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO