DNS over HTTPS Detection Using Standard Flow Telemetry

Loading...
Thumbnail Image

Authors

Jeřábek, Kamil
Hynek, Karel
Ryšavý, Ondřej
Burgetová, Ivana

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

The aim of DNS over HTTPS (DoH) is to enhance users’ privacy by encrypting DNS. However, it also enables adversaries to bypass security mechanisms that rely on inspecting unencrypted DNS. Therefore in some networks, it is crucial to detect and block DoH to maintain security. Unfortunately, DoH is particularly challenging to detect, because it is designed to blend into regular HTTPS traffic. So far, there have been numerous proposals for DoH detection; however, they rely on specialized flow monitoring software that can export complex features that cannot be often computed on the running sequence or suffer from low accuracy. These properties significantly limit their mass deployment into real-world environments. Therefore this study proposes a novel DoH detector that uses IP-based, machine learning, and active probing techniques to detect DoH effectively with standard flow monitoring software. The use of classical flow features also enables its deployment in any network infrastructure with flow-monitoring appliances such as intelligent switches, firewalls, or routers. The proposed approach was tested using lab-created and real-world ISP-based network data and achieved a high classification accuracy of 0.999 and an F1 score of 0.998 with no false positives.
The aim of DNS over HTTPS (DoH) is to enhance users’ privacy by encrypting DNS. However, it also enables adversaries to bypass security mechanisms that rely on inspecting unencrypted DNS. Therefore in some networks, it is crucial to detect and block DoH to maintain security. Unfortunately, DoH is particularly challenging to detect, because it is designed to blend into regular HTTPS traffic. So far, there have been numerous proposals for DoH detection; however, they rely on specialized flow monitoring software that can export complex features that cannot be often computed on the running sequence or suffer from low accuracy. These properties significantly limit their mass deployment into real-world environments. Therefore this study proposes a novel DoH detector that uses IP-based, machine learning, and active probing techniques to detect DoH effectively with standard flow monitoring software. The use of classical flow features also enables its deployment in any network infrastructure with flow-monitoring appliances such as intelligent switches, firewalls, or routers. The proposed approach was tested using lab-created and real-world ISP-based network data and achieved a high classification accuracy of 0.999 and an F1 score of 0.998 with no false positives.

Description

Citation

IEEE Access. 2023, vol. 2023, issue 11, p. 50000-50012.
https://ieeexplore.ieee.org/abstract/document/10123708

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO