Improving Robustness of Neural Networks against Adversarial Examples

Loading...
Thumbnail Image

Date

Authors

Gaňo, Martin

Mark

B

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Tato práce pojednává o kontradiktorních útocích na klasifikační modely neuronových sítí. Naším cílem je shrnout a demonstrovat kontradiktorní metody a ukázat, že představují vážný problém v strojovém učení. Důležitým přínosem této práce je implementace nástroje pro trénink robustního modelu na základě kontradiktorních příkladů. Náš přístup spočívá v minimalizaci maximalizace chybové funkce cílového modelu. Související práce a naše vlastní experimenty nás vedou k použití Projektovaného gradientního sestupu jako cílového útoku, proto trénujeme proti datům generovaným Projektovaným gradientním sestupem. Výsledkem použití nástroje je, že můžeme dosáhnout přesnosti více než 90% proti sofistikovaným nepřátelským útokům.
This work discusses adversarial attacks to image classifier neural network models. Our goal is to summarize and demonstrate adversarial methods to show that they pose a serious issue in machine learning. The important contribution of this work is the implementation of a tool for training a robust model against adversarial examples. Our approach is to minimize maximization the loss function of the target model. Related work and our own experiments leads us to use Projected gradient descent as a target attack, therefore, we train against data generated by Projected gradient descent. As a result using the framework, we can achieve accuracy more than 90% against sophisticated adversarial attacks.

Description

Citation

GAŇO, M. Improving Robustness of Neural Networks against Adversarial Examples [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2020.

Document type

Document version

Date of access to the full text

Language of document

en

Study field

Informační technologie

Comittee

doc. Ing. František Zbořil, Ph.D. (předseda) doc. Mgr. Adam Rogalewicz, Ph.D. (místopředseda) Ing. Matěj Grégr, Ph.D. (člen) Ing. Michal Hradiš, Ph.D. (člen) Ing. Lukáš Kekely, Ph.D. (člen)

Date of acceptance

2020-07-13

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B. Otázky u obhajoby: Jaké struktury (hloubky a použité vrstvy) neuronových sítí byly použity v rámci experimentů - vlastní navržené nebo dostupné z literatury?  Jak by se změnila robustnost vůči útokům, pokud by byly použity sítě s více či méně vrstvami? Jak generujete Adversarial Examples? Jak dlouho generování trvá? Kolik procent času zabere generování?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO