Self-supervised pretraining for transferable quantitative phase image cell segmentation
dc.contributor.author | Vičar, Tomáš | cs |
dc.contributor.author | Chmelík, Jiří | cs |
dc.contributor.author | Jakubíček, Roman | cs |
dc.contributor.author | Chmelíková, Larisa | cs |
dc.contributor.author | Gumulec, Jaromír | cs |
dc.contributor.author | Balvan, Jan | cs |
dc.contributor.author | Provazník, Valentýna | cs |
dc.contributor.author | Kolář, Radim | cs |
dc.coverage.issue | 10 | cs |
dc.coverage.volume | 12 | cs |
dc.date.issued | 2021-09-24 | cs |
dc.description.abstract | In this paper, a novel U-Net-based method for robust adherent cell segmentation for quantitative phase microscopy image is designed and optimised. We designed and evaluated four specific post-processing pipelines. To increase the transferability to different cell types, non-deep learning transfer with adjustable parameters is used in the post-processing step. Additionally, we proposed a self-supervised pretraining technique using nonlabelled data, which is trained to reconstruct multiple image distortions and improved the segmentation performance from 0.67 to 0.70 of object-wise intersection over union. Moreover, we publish a new dataset of manually labelled images suitable for this task together with the unlabelled data for self-supervised pretraining. | en |
dc.format | text | cs |
dc.format.extent | 6514-6528 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Biomedical Optics Express. 2021, vol. 12, issue 10, p. 6514-6528. | en |
dc.identifier.doi | 10.1364/BOE.433212 | cs |
dc.identifier.issn | 2156-7085 | cs |
dc.identifier.orcid | 0000-0002-9136-7873 | cs |
dc.identifier.orcid | 0000-0001-9950-6279 | cs |
dc.identifier.orcid | 0000-0003-4293-260X | cs |
dc.identifier.orcid | 0000-0002-3178-4202 | cs |
dc.identifier.orcid | 0000-0002-9658-3444 | cs |
dc.identifier.orcid | 0000-0002-3422-7938 | cs |
dc.identifier.orcid | 0000-0002-0469-6397 | cs |
dc.identifier.other | 172596 | cs |
dc.identifier.researcherid | C-6006-2018 | cs |
dc.identifier.researcherid | H-9359-2017 | cs |
dc.identifier.researcherid | D-3622-2018 | cs |
dc.identifier.researcherid | D-3886-2018 | cs |
dc.identifier.researcherid | D-7638-2012 | cs |
dc.identifier.researcherid | F-4121-2012 | cs |
dc.identifier.researcherid | C-8547-2014 | cs |
dc.identifier.scopus | 57202426072 | cs |
dc.identifier.scopus | 57188877911 | cs |
dc.identifier.scopus | 57188881119 | cs |
dc.identifier.scopus | 55769747816 | cs |
dc.identifier.scopus | 6701729526 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/201741 | |
dc.language.iso | en | cs |
dc.publisher | Optica Publishing Group | cs |
dc.relation.ispartof | Biomedical Optics Express | cs |
dc.relation.uri | https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-12-10-6514&id=459853 | cs |
dc.rights | (C) Optica Publishing Group | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2156-7085/ | cs |
dc.subject | cell segmentation | en |
dc.subject | deep learning | en |
dc.subject | transfer learning | en |
dc.subject | self-supervised | en |
dc.title | Self-supervised pretraining for transferable quantitative phase image cell segmentation | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-172596 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:39:50 | en |
sync.item.modts | 2025.01.17 15:15:40 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrství | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- boe12106514.pdf
- Size:
- 7.83 MB
- Format:
- Adobe Portable Document Format
- Description:
- boe12106514.pdf